

República de Honduras Secretaría de Educación

Créditos

El Manual de Carpínteria de Banco, Centro de Cultura Popular (CCP), es propiedad de la Secretaría de Estado en el Despacho de Educación de Honduras, C. A.

Presidencia de la República Secretaría de Estado en el Despacho de Educación

Subsecretaría de Asuntos Técnico Pedagógicos

Dirección General de Modalidades Educativas

Subdirección General de Educación de Jóvenes y Adultos

©Secretaría de Educación

Dirección General de Modalidades Educativas

Paseo de las Naciones Unidas, El Picacho, Tegucigalpa, Honduras.

Manual de Carpintería de Banco CCP

Se prohíbe la reproducción total o parcial de este manual por cualquier medio, sin el permiso por escrito de la Secretaría de Educación de Honduras

DISTRIBUCIÓN GRATUITA - PROHIBIDA SU VENTA

PRESENTACIÓN

n el marco del proyecto «Habilitación laboral» Vulcano 2012, con el apoyo del Ministerio de Educación y Cultura de España, la Secretaría de Educación a través de la Dirección General de Modalidades Educativas y la Organización de Estados Iberoamericanos han diseñado una herramienta didáctica que será integrada a los procesos de Formación ocupacional de los Centros de Cultura Popular de todo el país.

Se trata de un manual de aprendizaje denominado "Carpintero de Banco", elaborado con el propósito de brindar a los Instructores una guía temática y metodológica que les oriente en el desarrollo de su tarea como medidas de aprendizaje, y lograr de esta manera que los jóvenes y adultos puedan ejercer con eficiencia su función productiva de bienes y servicios. El manual promueve la adquisición de competencias a través de una enseñanza práctica y participativa, con ello no se trata de coartar su creatividad, se trata de apoyar el crecimiento y desarrollo de los saberes y experiencias tanto de los instructores como de los y las beneficiarias que aspiren mediante el aprendizaje de un oficio a insertarse al mundo laboral para mejorar su calidad de vida y por ende contribuir al desarrollo humano y productivo de Honduras.

La Secretaría de Educación reconoce por este medio la importancia y el valor del trabajo que desempeñan los Instructores de todas y cada una de las familias ocupacionales que se desarrollan en los diferentes Centros de Cultura Popular.

Secretaría de Estado en el Despacho de Educación

Índice

Introducción	7
Objetivo General	5
Módulos	6
Historia de la Medición	7
Herramientas de la Medición	8
Sistemas de Medición	11
Uso de Medidas de seguridad	17
Patio de madera	20
Tipos de madera	22
Caracteristicas externas de la madera	30
Cortes de la madera	35
Propiedades físicas de la madera	38
Métodos de determinación de la humedad en la madera	40
Sistema de secado de la madera	41
Rectificado, afinado y mantenimiento de herramientas de corte	45
Afilado de herramientas para aserrar	52
Ensambres	55
Herramientas para raspar y pulir	62
Evaluación	64

INTRODUCCIÓN

La Secretaria de Educación a través de la Dirección General de Modalidades Educativas ha Elaborado el manual de: "Carpintero de Banco" guía metodológica que utilizarán los Instructores de los Centros de Cultura Popular existentes en el país y todos aquellos que participen en esta capacitación continua en torno al mejoramiento de competencias en esta área.

Este manual ha sido elaborado por los Instructores (as) que imparten el taller de "Carpintero de Banco" y asesorado técnicamente por profesionales de la Dirección General de Modalidades Educativas en conjunto con el Instituto Nacional de Formación Profesional (INFOP). El mismo contiene un orden lógico y didáctico que permitirá a los participantes adquirir competencias básicas, capacidades y aptitudes idóneas en esta área, mediante la instrucción práctica y participativa formando así individuos que anhelen insertarse, mediante el aprendizaje de este oficio, a un mundo laboral que les permita mejorar su calidad de vida, sentirse útiles y participes al contribuir al desarrollo económico y social de sus familias, comunidades y por ende del país.

Con esta herramienta didáctica se espera que los instructores de los Centros de Cultura Popular, preparen jóvenes y adultos con una enseñanza práctica, participativa, de calidad, que permita a sus participantes adquirir las competencias necesarias para insertarse en el campo laboral de nuestra amada patria HONDURAS

Objetivos

Objetivo General

Al finalizar el módulo el Instructor será capaz de conocer los diferentes tipos de madera formas de cortar, secados y hacer uso adecuado de las herramientas y medidas de seguridad

Objetivos Específicos

- 1.- Practicar el uso de la medición en el trabajo de carpintería tomando en cuenta las medidas de seguridad
- 2.- Enumerar los diferentes tipos de madera y las diferentes formas de corte que existe
- 3.- Identificar las propiedades que tiene la madera
- 4.- Identificar cuando la madera tiene agua y hacer el uso correcto de la técnica de secado
- 5.- Utilizar el equipo de rectificado, afilado adecuadamente dándole mantenimiento a cada una de las herramientas
- 6.- Practicar los ensambles sencillos, de media madera y de empalmes para facilitar el trabajo en la madera
- 7.- Distinguir cada una de las características de las lijas y uso de tacos para facilitar el trabajo de lijado en la madera
- 8.- Dar mantenimiento adecuado a las herramientas electro manual

SDGEJA Subdirección General de Educación de Jóvenes y Adultos

Módulos

M-01

Historia de la medición

U-01.- Historia de la medición

U-02.- Uso de medidas de seguridad

M-02

Tipos de madera

U-01 Preservado de la madera

U-02 Secado técnico de la madera

U-03 Cortes de la madera

U-04 Propiedades de la madera

U-05 Propiedades organolépticos de la madera

U-06 Agua de la madera

U-07 Sistema de secada

U-08 Sistema de apilado de la madera aserrada.

M-03

Rectificado afilado y mantenimiento de herramientas de corte guiado y libre

U-01 Herramienta de corte guiado y libre

U-02 Partes del cepillo de vuelta o de codo

M-04

Afilado de herramientas para aserrar

U-01 Herramientas manuales para aserrar

U- 02 Afilado del serrucho paso a paso

U-03 Ensambles

U-04 Ensambles sencillos y a media madera

U-05 Empalmes de comprensión

U-06 Herramientas para raspar alisar y pulir

U -07 Herramientas para apretar

U -0 8 Características de las lijas

U-09 Tacos para lija

U- 10 Herramientas electro manuales

Hixtoria de la medición

Hace algunos siglos, medir resultaba algo muy complicado. Como deciamos, medir es simplemente comparar, y cada persona, cada pueblo, cada país comparaba las cosas con lo que más se le antojaba. Por ejemplo, usaban la medida mano para medir distancias, y aun hoy mucha gente, cuando no tiene una regla o una cinta métrica, mide el ancho de la puerta con la mano o el largo del patio con pasos. El problema con esto es obvio; todos los seres humanos no tienen los pies ni las manos del mismo tamaño, lo que constituyo un problema de medición.

Al comenzar el hombre a construir, pronto descubrió que era esencial algún tipo de medida de dimensiones. Era lógico que utilizara parte de su cuerpo como patrones de medidas. Los egipcios primitivos establecierón el cúbito como la longitud del brazo desde el codo hasta la punta de los dedos. Las subdivisiones del cúbito comprendían la cuarta o "span", la palma o el palmo y el digito. Las desventajas de estos patrones o unidades de medidas pronto se hicieron aparentes. No había dos personas que fueran exactamente iguales.

MEDIR

La medición es la forma de determinar el tamaño, la cantidad o la extensión de algo. Es la manera de describir un objeto mediante números. Casi todo lo que un mecánico tiene que hacer, requiere de alguna clase de medición; Por tanto, debe entender las reglas y conocer las herramientas que se utilizan para realizar mediciones de precisión.

HERRAMIENTAS DE MEDIOJÓN

1.- METRO DE CINTA METÁLICA. Es el metro por excelencia. Tiene gran exactitud y vale para tomar todo tipo de medidas. Para medir longitudes largas una persona sola, conviene que la cinta metálica sea bastante ancha y arqueada para mantenerla recta sin que se doble.



2.- METRO DE CARPINTERO. Aunque se sigue utilizando en algunas carpinterías, el metro clásico de carpintero va desapareciendo poco a poco y sustituyéndose por el anterior.

3.- REGLA METÁLICA. Las reglas metálicas son muy útiles para trabajos de carpintería por su enorme exactitud y para dibujar líneas rectas ayudándonos de ellas.

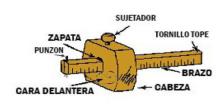
4.- ESCUADRA DE CARPINTERO. La escuadra de carpintero es un clásico insustituible pues con ella se puede comprobar el escuadrado de un mueble (o de un ensamble) y además sirve para trazar líneas perpendiculares o a 45° respecto al canto de un tablero. Las hay regulables en ángulo, pero se puede perder exactitud en la posición de ángulo recto con respecto a las escuadras fijas.

5.- TRANSPORTADOR DE ÁNGULOS. El transportador de ángulos es un instrumento muy útil cuando tenemos que fabricar algún elemento con ángulos no rectos. También sirve para copiar un ángulo de un determinado sitio y trasladarlo al elemento que estemos fabricando.

6.- PIE DE REY. El calibre o pie de rey es insustituible para medir con precisión elementos pequeños (tornillos, orificios, pequeños objetos, etc). La precisión de esta herramienta llega a la décima e incluso a la media décima de milímetro. Para medir exteriores se utilizan las dos patas largas, para medir interiores (p.e. diámetros de orificios) las dos patas pequeñas, y para medir profundidades un vástago que va saliendo por la parte trasera. Para efectuar una medición, ajustaremos el calibre al objeto a medir y lo fijaremos. La pata móvil tiene una escala graduada (10 o 20 rayas, dependiendo de la precisión). La primera raya (0) nos indicará los milímetros y la siguiente raya que coincida exactamente con una de las rayas de la escala graduada del pie nos indicará las décimas de milímetro (calibre con 10 divisiones) o las medias décimas de milímetro (calibre con 20 divisiones).

7.- METRO LÁSER. Es el metro de última tecnología. Mide fácilmente y con una enorme precisión distancias de todo tipo. Su único inconveniente es su elevado precio para un aficionado.

8.- NIVEL. El nivel sirve para medir la horizontalidad o verticalidad de un elemento. Es una herramienta que no puede faltar a ningún aficionado al bricolaje, ya que se utiliza constantemente (al colgar un mueble o un cuadro, al instalar una estantería o un frente de armario, etc).



9.- ESCUDRA MOVIL CON NIVEL. Es una herramienta que se utiliza para medir y trazar ángulos rectos o 90 grados lo mismo que para angulos de 45, además el nivel sirve para nivelar las piezas en el momento de acoplarlas.

10.- CARTABÓN. herramienta para medir y trazar ángulos de 45 grados.

12.- COMPÁS. Un compás es un instrumento de dibujo técnico que se puede utilizar para realizar círculos o arcos. También se puede utilizar como una herramienta para medir distancias rayador.

COMPÁS DE PUNTAS

COMPÁS DE INTERIORES

COMPÁS DE EXTERIORES

13.- FLEXÓMETRO. Es una herramienta la cual se utiliza para medir longitudes en el sistema métrico decimal y el sistema inglés.

Flexómetros digitales

14.- LÁPIZ DE CARPINTERO

15.- METRO DE ÚLTIMA TECNOLOGÍA.

16.- RAYADOR

SISTEMAS DE MEDICIÓN

1. SISTEMA MÉTRICO DECIMALO SISTEMA INTERNACIONAL DE UNIDADESE

Tuvo su origen en Francia en 1790 durante la revolución Francesa. Un grupo de científicos recomendó una nueva unidad de longitud EL METRO, en 1960 se actualizó y simplificó el sistema métrico para satisfacer las necesidades del mundo entero.

La unidad básica de sistema métrico es el metro.

El metro está dividido en decímetros, centímetros y milímetros. Las unidades que más se usan para la fabricación son el centímetro y el milímetro.

Medir: Es determinar una cantidad comparándola con una unidad de medición.

Unidad: Es la magnitud que se toma como término de comparación.

El valor de una medición consta de:

- 1.- Un número que indica las veces que la unidad esta contenida en la magnitud medida; y
- 2.- Un nombre o símbolo que indica la clase de unidad empleada.

Ejemplo:

25 m = 25 metros 37 °c = 37 grados centígrados 3 lts. = 3 litros

30 lbs. = 30 libras 15" = 15 pulgadas 10 kg. = 10 kilogramos

En la actualidad el sistema de medidas utilizado en la mayoría de los países del mundo es el sistema métrico decimal. Este sistema tiene múltiplos y submúltiplos que aumenta y disminuyen de diez en diez.

CLASES DE MEDIDAS

Delongitud Desuperficie Devolumen Decapacidad De peso.

La unidad de medida de longitud es el metro y se representa por m.

Los múltiplos del metro se forma anteponiendo a la palabra metro las palabras griegas Deca, Hecto, Kilo y Mira que Significan diez, cien, mil y diez mil respectivamente que significan décima, centésima, y milésima parte. Estas medidas aumentan de diez en diez.


MÚLTIPLOS Y SUBMÚLTIPLOS DEL METRO

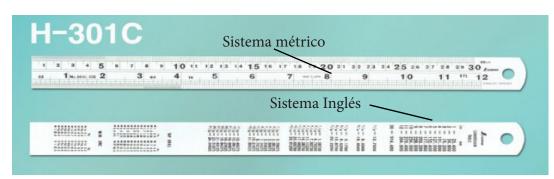
agtemn métrico decimal			
NOMBRE DE LA UNIDAD	ABREYIATURA	YALOR	
Miriámetro	Mm.	10,000 m	
Kilómetro	Km.	1,000 m	Múltiplos
Hectómetro	Hm.	1,000 m 100 m	Manapios
Decámetro	D.22	10 m	
Metro	m	1 m	Unidad
Decímetro	dm.	0 .1 m	
Centímetro	cd.	0.01 m	Submúltiplos
Milímetro	mm.	0 .1 m 0.01 m 0.001 m	

Escala del sistema métrico

La cara de apoyo es cero, de cero a uno es un centímetro, de cero a dos son dos centímetros y así sucesivamente, en la escala superior o sea la escala del sistema métrico decimal. Es igual con otros instrumentos de medir como la cinta métrica.

Cada línea que tiene la escala del sistema métrico decimal mide o tiene un valor de un milímetro.

1 m = 100 cm


1 m = 1000 mm

1 m = 39.37 pulg

1 m = 3.2808 pies

1 cm = 10 mm

1 pulg = 2.54 cm

EJERCICIOS DE MEDICIÓN EN EL SISTEMA MÉTRICO DECIMAL

1.- Trazar líneas en una hoja de papel con las siguientes medidas:

Ejemplo:

2 cm		5 cm	
3 cm	2 pulg	4 mm	
3 pulg	5 mm	8 cm	
4.2 cm	6.8 pulg	30 mm	
3.5 cm	2.2 dm	2.5 cm	

2.- Convertir las unidades de medición como se indica. Ejemplo:

$$2 \text{ cm} = \underline{20} \text{ mm}$$

 $5 \text{ cm} = \underline{1.97} \text{ pulg}$

2. SISTEMA DE MEDIGIÓN LINEAL

Este tipo de medición recibe este nombre debido a que se mide en línea recta. El sistema de medición lineal se divide en dos partes:

- a. Sistema Métrico Decimal « S.M.D. »
- b. Sistema Inglés « S.I. »

A. SISTEMA MÉTRICO DECIMAL:

La base del S.M.D. es el metro inventado por los europeos. Este tipo de sistema de medición lineal «S.M.D.» se le conoce así, porque va de 10 en 10. Consta de múltiplos y submúltiplos.

Múltiplos: son medidas mayores que el metro y tienen su propia simbología, abreviaturas y dimensión.

Simbología	Abreviatura	Dimensión
Decámetro	DC	10 m
Hectómetro	HM	1 00 m
Kilómetro	KM	1000 m
Miriámetro	MM	10,000 m

La mayoría de estas magnitudes o medidas se utilizan en la toma de la topografía

Submúltiplos: Son medidas menores que el metro.

Simbología	Abreviatura	Dimensión
Décima	dm	0.1 m = 10 cm.
Centésima	ctm	0.01 m = 10 mm
Milésima	mm	0.001 m= 1 cm/10

Abreviaturas:

Esquemas de los Submúltiplos del Metro.

1 centímetro ampliado 10 veces

Equivalencias: A.- 1 m. =
$$10 \text{ dm}$$

B.- 1 m. = 100 cm
C.- 1 m = 1000 mm
C.- 1 cm. = 10 mm

Ejercicios: Utilizando la regla, centímetros «cm» y los milímetros «mm», trazar un segmento de recta con las siguientes dimensiones:

- **1.** 20 mm
- **2.** 35 mm
- **3.** 76 mm
- **4.** 52 mm
- **5.** 67 mm
- **6.** 2.2 cm
- **7.** 3.4 cm
- **8.** 4.9 cm
- **9.** 5.4 cm
- **10.** 6.9 cm

metro m/m=milésimo mm=milímetro

Ejercicios: Con la cinta métrica medir puertas, mesas y otros objetos, Utilizando metros, centímetros y milímetros. Ejemplo:

Medición de la siguiente regla en forma longitudinal, m. cm. mm.

1.60 M 1.60 cm. 1.60 mm.

2. SISTEMA INGLÉS «S.I.»

La base del sistema inglés «S.I.» es la pulgada, fue inventada por los ingleses y traído a América por ellos mismos, se utilizan con mayor frecuencia en los EE. UU., y en varios países de América.

Este tipo de medición consta de múltiplos y submúltiplos.

Múltiplos son medidas mayores que la pulgada y tiene su simbología

Simbología	Abreviatura	Dimensión
Pie	Pie	12" pulgadas
Vara	Va	33 pulgadas
Yarda	_y da	36 pulgadas
Metro	M.	39.37" - 39" 3/8
Cuarta	Cta	9" pulgadas
Gema	G ^e	6" pulgadas

El pie como magnitud se utiliza para comprar madera, poliducto, cáñamo, etc.

La vara comúnmente se utiliza para comprar terrenos.

La yarda es utilizada en el comercio para comprar telas, alambres, plásticos, etc.

Ejercicios: Utilizando la regla y la pulgada, trazar un segmento horizontal con las siguientes dimensiones:

 1. 1/2"
 2. ¾"
 3. 5/8
 4. 7/8
 5. 1 1/16"

6. 1 1/4 7. 1 11/16" 8. 1 15/16" 9. 2 3/16" 10. 3 7/16"

MANEJO ADECUADO DE HERRAMIENTAS Y MATERIALES:

- 1. Verifique el estado de las herramientas antes de empezar a usarlas.
- 2. Si encuentra una herramienta en condición deficiente no la utilice, regrésela, hágaselo saber al auxiliar del taller y solicite otra en buen estado.
- 3. Para levantar herramientas o materiales y evitar lesiones de la espalda, use técnicas adecuadas para ello.
- 4. Cuando use materiales inflamables asegúrese de estar alejado de posibles fuentes de ignición (estufas, resistencias, bombillos).
- 5. Elimine siempre las rebabas y bordes agudos de las piezas de trabajo, así como, los clavos que sobresalen, las astillas y las protuberancias cortantes.
- 6. Algunos objetos en el taller de máquinas pueden estar calientes. Permita que se enfríen antes de entrar en contacto con ellos o utilice los medios de protección adecuados para su manipulación en éste estado.
- 7. Siempre use los elementos de protección individual.

ORDEN Y LIMPIEZA:

- Manténgase el piso libre de herramientas, materiales desperdicios que puedan impedir el desplazamiento o represente algún riesgo.
- 2. No coloque sobre las máquinas ninguna herramienta o elemento para evitar accidentes.
- 3. Manténgase limpias las superficies de trabajo.
- 4. Detenga siempre la máquina antes de tratar de limpiarla,
- 5. Solicite al auxiliar del taller los elementos apropiados (cepillos, trapos, etc.) para realizar labores de limpieza; nunca utilice directamente las manos para realizar estas labores.
- 6. Absténgase de trazar o cortar con bisturí sobre la superficie de las máquinas.
- 7. Asegúrese de utilizar únicamente la máquina o herramienta para realizar los trabajos para los que está destinada.
- 8. Sea precavido en las zonas donde ese usa el aíre comprimido. Nunca apunte la boquilla hacia una persona; ésta acción puede hacer volar partículas y causar lesiones serias.
- 9. Siempre recoja los sobrantes de los materiales que haya transformado y colóquelos en los sitios indicados para tal fin, ya sea como material de desecho o reciclaje.
- 10. No obstaculice el acceso a los elementos para atención de emergencias (botiquín, extintores, puerta de emergencia, etc.).

Uso de medidas de seguridad

ELEMENTOS DE PROTECCIÓN INDIVIDUAL:

SDGEJA Subdirección General de Educación de Jóvenes y Adultos

elementos de profesción individuals

PROTECCIÓN RESPIRATORIO: Como mascarillas y respiradores. Usar el protector respiratorio adecuado cuando vaya a estar en contacto con partículas que estén suspendidas en el aire como aserrín, polvo, pintura o gases.

PROTECTORES VISUALES: Como gafas de protección transparentes y para soldadura de oxiacetilénico.

PROTECTOR FACIAL: Pueden ser como caretas transparentes. Tanto los protectores visuales como faciales deben utilizarse cuando se esmeril, maneje líquidos corrosivos o inflamables, metales derretidos o cuando exista el riesgo que partículas salten y puedan entrar en los ojos.

PROTECTOR MANUAL : Estos pueden ser como los guantes . Éstos se deben utilizar cuando se manipulen materiales calientes o que presenten riesgo de corte.

PROTECTOR AUDITIVO: Estos pueden ser tipo tapón y tipo copa. Éstos se deben utilizar cuando se entre en un ambiente ruidoso o cuando esté manejando equipos que generen demasiado ruido.

NORMAS DE SEGURIDAD DENTRO DEL TALLER DE CARPINTERÍA

Estas son reglas que deben cumplirse al pie de la letra, ya que reportan un ambiente de seguridad en el área de trabajo A continuación las siguientes reglas:

- 1. La utilización de herramientas-máquinas sólo se puede realizar con la autorización del profesor y bajo su observación directa.
- 2. Las herramientas con las que se haya acabado de trabajar deben volver inmediatamente a su sitio.
- 3. Cada alumno o grupo de alumnos mantendrá limpio y ordenado su lugar de trabajo recogiendo todos los materiales que sobren o ya no se estén utilizando.
- 4. Queda terminantemente prohibido hacer bromas o juegos en el aula o taller, pues eso implica un alto riesgo de accidente.
- 5. Todas aquellas personas que trabajen con la taladradora o la sierra de calar eléctricas deberán hacerlo provisto de gafas protectores y con el pelo corto o recogido, y nunca cerca de una fuente de agua.
- 6. Para utilizar el estañador se precisa el permiso y la presencia del profesor, y se han de utilizar gafas y guantes protectores.
- 7. Para utilizar la pistola de pegamento termo fusible es necesario utilizar gafas y guantes protectores.
- 8. Cualquier persona que por una razón u otra sufra un accidente en el aula-taller, por pequeño que éste sea, debe comunicarlo inmediatamente al profesor.

- 9. Queda prohibido llevar bancos de asiento a la zona de trabajo manual del aula-taller.
- 10. Queda prohibido subirse a bancos a mesas en el aula-taller.
- 11. Tener el nivel de ruido más bajo posible.
- 12. Está prohibido fumar y comer dentro de las instalaciones.
- 13. No utilizar dentro de las instalaciones aparatos de radio, grabadoras y celulares.
- 14. Guardar en los casilleros localizados dentro del área del taller todos los elementos que no sean indispensables para su trabajo en el taller.
- 15. Siempre se deben llevar y utilizar los elementos de protección individual necesarios para cada trabajo en el taller de máquinas, como: (guantes, caretas, mascarillas, gafas protectoras, tapa oídos, petos, etc.
- 16. Planificar el trabajo y solicitar las herramientas adecuada en los tiempos determinados para esta actividad.

SDGEJA Subdirección General de Educación de Jóvenes y Adultos

PATIO DE MADERA

TIPOS DE MADERAS

- Blandas
- Semiduras
- Duras

PRESERVADO DE LA MADERA

Características externas

SECADO TÉCNICO DE LA MADERA

- Introducción
- Anatomía de la madera

CORTES DE LA MADERA

- Radial
- Tangencial
- Transversal

PROPIEDADES DE LA MADERA

- Organolépticas
- Físicas

EL AGUA EN LA MADERA

Contenido de la humedad

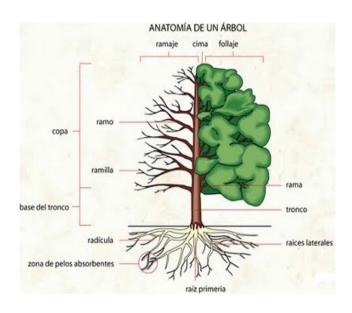
SISTEMAS DE SECADO

- Natural
- Artificial

SISTEMAS DE APILADO

- Horizontal
- En triángulo
- En caballete
- Apilado por extremos o de pie
- En gradas

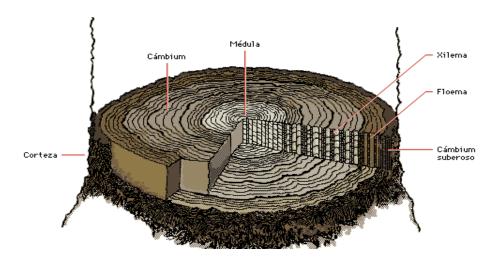
La madera es un material duro y resistente que se produce mediante la transformación del árbol. Es un recurso forestal disponible que se ha utilizado durante mucho tiempo como material de construcción. La madera es uno de los elementos constructivos más antiguos que el hombre ha utilizado para la construcción de sus viviendas y otras edificaciones. Pero para lograr un resultado excelente en su trabajabilidad hay que tener presente ciertos aspectos relacionados con la forma de corte, curado y secado.


ELÁRBOL

Es una planta perenne, de tronco leñoso y elevado que ramifica a cierta altura del suelo.

PARTES DEL ÁRBOL

- Copa: es el conjunto de ramas y hojas que forman la parte superior del árbol.
- Tronco o Fuste: se encuentra entre la copa y las raíces.
- Raíz: es la parte inferior del árbol que penetra en el suelo, cuya función es absorber agua y nutrientes minerales y fijar la planta al suelo.



PARTES DE UN TRONCO

La madera es el conjunto de células que conforman el tejido leñoso, en ella se pueden distinguir tres partes:

- La Médula: se encuentra ubicada generalmente en la parte central del tronco. Está constituida por células débiles o muertas, a veces de consistencia corchosa. Su diámetro varía entre menos de un milímetro, hasta más de un centímetro, según la especie.
- *El Duramen*: también llamado corazón, es la zona que rodea a la médula. Es de color oscuro y está constituido por células muertas lignificadas que le dan mayor resistencia al ataque de hongos e insectos. Su proporción depende de la especie y de la edad del árbol.
- · La Albura: es la zona de coloración más clara, conformada por células jóvenes. Presenta menor resistencia a los ataques biológicos. La albura es más abundante, cuanto más joven es el árbol.

TIPOS DE MADERA

MADERAS BLANDAS:

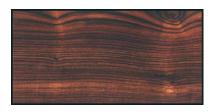
Engloba a la madera de los árboles pertenecientes a la orden de las coníferas. La gran ventaja que tienen respecto a las maderas duras, es su ligereza y su precio mucho menor. No tiene una vida tan larga como las duras. La manipulación de las maderas blandas es mucho más sencilla, aunque tiene la desventaja de producir mayor cantidad de astillas. La carencia de veteado de esta madera, le resta atractivo, por lo que casi siempre es necesario pintarla, barnizarla o teñirla.

MADERAS SEMI-DURAS

Se caracterizan por ser menos duras y pesadas que las anteriores, y si bien son muy resistentes no se las recomienda para su uso a la intemperie.

Este tipo de maderas pueden ser utilizadas para:

- * pisos, zócalos y umbrales sometidos a un menor tránsito
- * tirantes y vigas para techos de menores requerimientos de resistencia
- * escaleras, pasamanos, revestidos, barandas, etc.



Maderas duras

Proceden de los arboles de hoja caduca. Las madera duras contiene en su mayoría sustancias con propiedades fungicidas e insecticidas, pero generalmente, son difíciles de trabajar y con tendencia a la rotura por impacto o presión. Presentan aceites en su composición, lo cual, hace necesario el uso de adhesivos sintéticos para pegarlas, sin embargo, son muy adecuadas para la talla y para elaborar los mangos de los utensilios. Entre las más comunes tenemos el robre, caoba, nogal, arce, cerezo, encino: y entre las exóticas el granadillo, ébano, bubina, coa, cocobolo, palo de rosa, etcétera.

ولم والالمسك

Cuapinol

Commodified magner

offool

PRESERVANTES PARA LA MADERA

Sustancias preservantes. Son sustancias químicas, por lo general compuestos sólidos, que son usados normalmente en soluciones tales que, al ser aplicadas a la madera, le imparten características de durabilidad frente al ataque de hongos e insectos.

Requisitos de un preservante. Para que una sustancia química pueda ser reconocida como preservadora de la madera debe reunir las siguientes características que la acreditan como tal:

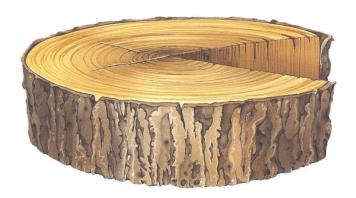
Toxicidad. La toxicidad es fundamental para los preservantes con el fin que puedan controlar o anular la actividad de los elementos biológicos que afectan a la madera.

Los preservantes deben transformar la madera en un material venenoso para los organismos xilófagos que pretenden vivir o desarrollarse en su interior. Para que los productos químicos ejerzan su acción letal en forma permanente o prolongada, deben ser solubles en los líquidos celulares de los agentes de destrucción. La creosota y el pentaclorofenol, que por su naturaleza son insolubles en agua, son suficientemente solubles como para intervenir en la fisiología normal de los hongos e insectos xilófagos, produciéndoles la muerte.

Solubilidad. En la solubilidad de estas sustancias influyen los exudados ácidos o alcalinos de los agentes biológicos. La dosis mínima letal de cada preservante está dada por la menor cantidad de producto químico activo, en relación al sustrato, necesaria para eliminar al enemigo biológico.

Cantidades menores pero cercanas a la dosis mínima letal sólo inhiben el desarrollo de los organismos xilófagos, pero no los elimina; es decir, se ejerce una acción fungistática, pero no fungicida, si se toma a los hongos como ejemplo. El conocimiento de la dosis mínima letal es sumamente importante para la eficacia del tratamiento preservador y para los aspectos económicos de la impregnación de la madera.

Penetrabilidad. La penetración o profundidad que alcanza un preservante en la madera es un factor que depende del grado de viscosidad del producto químico, de las características y contenido de humedad de la madera y del método de tratamiento, entre otros.


Algunas maderas son muy permeables, pero otras impermeables y por lo tanto difíciles de penetrar. La viscosidad alta, como la de la creosota, por ejemplo, impide la rápida

penetración del preservante; sin embargo, aplicando temperaturas adecuadas en el proceso de impregnación, se facilita la penetración por reducción de la viscosidad.

La humedad de la madera, en la mayoría de los casos, es un obstáculo para la penetrabilidad, no obstante, existen métodos de tratamiento como los de ósmosis, difusión y otros, que requieren un alto contenido de humedad.

Permanencia. La madera tratada debe durar muchos años. Para que el preservante ofrezca esta garantía, los componentes tóxicos que poseen deben ser de tal naturaleza que pueden fijarse a la madera en forma permanente, lo cual generalmente se consigue por la formación de precipitados insolubles a reacciones químicas y que conservan su grado de toxicidad. En otras palabras, los precipitados tóxicos no deben alterarse por lixiviación, volatilización o por cambios químicos.

Inocuidad. Los preservantes deben ser seguros de manejar. En general, no pueden exigir del hombre otros cuidados que los requeridos los productos químicos corrientes. para Algunos productos ofrecen cierto riesgo para las personas que los manipulan, ya que concentrados son tóxicos para el hombre y los animales domésticos; sin embargo, esto mismo ocurre con una serie de productos químicos que son usados frecuentemente en la industria o el hogar. Sólo cuando un preservante entraña un riesgo especial se le debe clasificar como peligroso.

No corrosivo. Los preservantes no deben ser corrosivos para los metales (clavos, pernos, equipos, etc.). El agregado de cromatos alcalinos en las multisales modernas tiene la misión de fijar los componentes y contrarrestar la actividad corrosiva de algunos compuestos ácidos.

No combustible. Los preservantes no deben aumentar el poder de combustión de la madera tratada. La creosota y el pentaclorofenol confieren cierto riesgo de inflamabilidad, lo cual se reduce con la eliminación del exudado (Acumulación superficial de preservante proveniente del interior de una pieza de madera impregnada, que puede dar origen a un residuo) en las piezas tratadas. Las sales solubles en agua ofrecen una mayor garantía frente a los peligros de incendio. En algunas fórmulas se incluyen sustancias inhibidoras de la propagación del fuego.

De fácil aplicación. Los preservantes no deben ofrecer dificultades para su incorporación en la madera.

Permitir Acabados. Los preservantes no deben interferir en los acabados que se realicen en la madera tratada.

No fitotóxicos. La madera impregnada empleada en ciertas labores agrícolas, no deben afectar a los productos como la vid, pimiento, maracuyá y otros que pueden crecer sobre soportes o tutores.

Económicos y accesibles. El costo de los preservantes influye sobre el valor final de la madera tratada. Cuando éste es muy elevado, incide significativamente en el costo del tratamiento y puede llegar a impedir que la madera impregnada compita con aquella sin tratamiento o con otros materiales capaces de sustituirla. En la selección de un preservante debe tenerse en cuenta su disponibilidad en los mercados locales y el destino que se pretenda dar a la madera tratada.

Clasificación de las sustancias preservantes. Se pueden clasificar en dos grupos principales de preservantes:

1.- Solubles en agua o hidrosoluble

2.- Solubles en solventes orgánicos u oleosolubles

Hidrosolubles. Son solubles en agua. Se lixivian fácilmente en contacto con suelos o ambientes húmedos, a menos que se incorpore en la sal un elemento que permita formar un compuesto estable que se fije en la madera, tal como el Cromo o sal de Cromo. Los preservativos hidrosolubles pueden ser simples, constituidos por una sola sal disuelta, o compuestos, constituidos por sales inorgánicas con o sin la adición de sustancias orgánicas solubles en agua (comprenden los de arsénico, zinc, cobre).

Lixiviables. Estos preservantes hidrosolubles son los más generalizados en la impregnación de la madera, sobre todo en los últimos tiempos, en donde han demostrado ser muy eficaces, pero su utilización en la actualidad es restringida y se recomienda para interiores y en pequeña escala, debido a su facilidad de lixiviarse al menor contacto con el agua.

Comprenden: arseniato de sodio, bórax, ácido bórico, y mezclas de ambos, fluoruros de sodio, sulfato de cobre, cloruro de zinc. Las combinaciones de productos simples, para formar las sales dobles, tuvo su origen en la

necesidad de reforzar la actividad tóxica de los preservadores simples ; por ejemplo, las mezclas de ácido bórico y tetraborato de sodio son buenas, pero solo para interiores por que se lavan o lixivian con facilidad.

No lixiviables. Actualmente, a las formulaciones anteriores se le ha agregado el cromo, para hacerlas no lixiviables, lo que ha dado muy buenos resultados y origen a las multisales. A este tipo de preservadores pertenecen la mayoría de las sales comerciales del mundo.

Oleosolubles. Solubles en solventes orgánicos. Son estables y resisten la lixiviación en madera expuesta a la intemperie; no se recomienda utilizar pinturas o barnices en maderas tratadas con estos preservadores. Se conocen varios tipos de estos preservantes

DEFECTOS CAUSADOS POR XILÓFAGOS

Los defectos por xilófagos son los que ocasionan todos los organismos vivos que se alimentan de la madera.

Patologías de la madera producidas por ataques de hongos:

Manchas: Las manchas son causadas por hogos que crecen en la madera, atacan principalmente la albura y son de varios colores, la mas común es la Mancha Azul donde el color de la madera varia de azul claro a negro azulado tiene poco efecto sobre las propiedades de resistencia de la madera, aunque si disminuve su valor en aquellos casos en los cuales el color es una propiedad importante.

Mohos: Durante tiempos cálidos y húmedos el moho crece en la superficie de la madera. Los mohos son incoloros por lo tanto no manchan la madera si no que causan decoloraciones en las superficies de las piezas de madera. El tratamiento para controlar tanto los hongos como el moho se realiza por inmersión o rociando la madera con un fungicida apropiado como el pentaclorofenato de sodio al 2%.

Pudrición: Es la descomposición de la madera producida por la acción de hongos xilófagos, acompañada de un proceso gradual de cambio en las características físicas, químicas y mecánicas de la madera.

Pudrición Clara: Es aquella que se caracteriza por la coloración blanca de la madera como consecuencia de la descomposición de la lignina, el material residual semeja un esqueleto de fibras descompuestas constituidas casi exclusivamente por celulosa.

Pudrición castaña: Es aquella que se caracteriza por una coloración castaña oscura de la madera como consecuencia de la descomposición de de la celulosa. La parte afectada se contrae formando hendiduras perpendiculares u oblicuas, presentando la madera podrida un aspecto de pequeños cubos o bloques.

Apolillado: Son los defectos causados por insectos como la broma o comejen.

LOS INSECTOS XILOFAGOS

Los insectos llamados xilófagos (cuyo nombre significa "**comedores de madera**") causan, en su estado de larva, muchas daños a la madera, bien sea en el árbol, en los almacenes, o ya en su definitiva aplicación, muebles, tallas etc., estos insectos tienen generalmente un cuerpo rechoncho, ojos oblongos y unas antenas dobladas en su parte media y rematadas a modo de maza.-En los árboles los daños son producidos por las galerías que estas larvas excavan con sus dientes al alimentarse, que llegan a perforar galerías de hasta 3 cm. de diámetro, llegando en casos extremos a imposibilitar incluso el uso de alguna parte del tronco.

Carcona (normalmente conocida como carcoma)

Las especies de escarabajos tipo carcoma que más frecuentemente atacan maderas estructurales en edificios o muebles, pertenecen a las familias Anóbidos, Lyctidos y Carambífidos. Son organismos que se alimentan de los principales componentes de la madera (celulosa y lignina).

La carcoma de la madera, que tantos estragos causa en los mueble de nuestras casas, sobre todo en maderas de baja calidad

Anóbidos.

Las hembras de estos escarabajos depositan sus huevos en las grietas de la madera. De estos pequeños huevos emergen larvas que son las causantes de túneles y galerías en la madera afectada. Cuando la larva alcanza su total desarrollo se transforma en pupa emergiendo al exterior mediante taladros que realiza en la madera, produciendo pequeños agujeros en la misma.

Lyetidos.

Ataca maderas con alto contenido en almidón, produciendo un ataque similar al de los Anóbidos pero el orificio de salida es algo menor produciendo un polvo finísimo.

Carambifidos.

Son de mayor tamaño que los anteriores y las larvas tienen segmentos muy marcados con la cabeza hundida en el tórax. El daño en la madera es más extenso ya que los túneles son enormes. Los adultos emergen de la madera en verano produciendo orificios de salida grandes 3-6 mm. Y ovales.

· Termites.

De las 1.900 especies de termitas que se conocen, sólo unas 50 atacan la madera de edificios, el resto destruye cosechas, pero normalmente no son objeto de trabajos de control.

En cuanto a su clasificación, lo más importante no es el nombre de las especies, sino el grupo al que pertenezca. Hay dos grupos principales: Subterráneas y termitas de la madera seca. Son sus hábitos muy diferentes los que determinan el método de control.

Como en todas las organizaciones bien regidas, existen individuos diferenciados con funciones definidas.

El apareamiento tiene lugar entre machos (reyes) hembras (reinas). Las larvas producen huevos, a veces miles por día. Las larvas resultantes se transforman en obreras que van en busca de alimento (madera y otras materias vegetales).

Las termitas soldado, también desarrolladas de las larvas, son sólo del grupo subterráneas.

Las colonias suelen encontrarse en el suelo, para alcanzar las estructuras de la madera situadas sobre el nivel del suelo, las termitas obreras construyen una especie de tuberías.

Las termitas subterráneas atacan principalmente la parte blanda y joven de maderas húmedas, haciendo túneles paralelos a la fibra. El hecho de que estos insectos dañen la madera se debe a que pueden digerirla, ayudados por enzimas o protozoos intestinales.

En interiores, ampollas oscuras en las maderas son signos de ataque, así como sonidos.

El control de este tipo de insectos es más fácil si se adoptan medidas preventivas adecuadas (edificios con drenajes y ventilación; pesticidas aplicados al suelo...)

El tratamiento curativo.

Cuando se ha producido el ataque es más complejo, ya que hay que destruir los nidos y tratar toda la madera afectada, eliminándola o estableciendo barreras químicas que impidan la continuación del ataque. Suelen emplearse productos muy residuales: oleosos o emulsionables en agua impregnándose e invectándolo en maderas afectadas.

La utilización de productos gaseosos bajo cubiertas puede ser otra solución pero este método no tiene efectos residuales y no proporciona protección contra nuevas infestaciones.

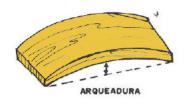
Termitas de la madera seca

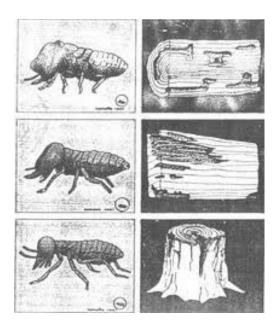
Estas termitas viven y anidan sobre madera seca, no necesitan el contacto con el terreno y no dependen de la humedad del suelo. Una hembra pondrá huevos en las grietas de la madera existente, sino se hace nada las termitas llegarán a invadir toda la madera. No crean un nido fijo, se mueven a lo largo de sus galerías, limpias y sin tierra. Al contrario que las huevas en el interior de las maderas. Sus gránulos fecales son eliminados a través de pequeños agujeros practicados a tal fin en la madera.

La solución ideal al problema es tratar las maderas, antes de emplearlas para la construcción, con productos químicos a presión; esto asegura que no será atacada.

Sólo se pueden controlar estas infecciones aplicando insecticidas directamente a las maderas o por fumigación completa de los edificios con gases como el bromuro de metilio o el floruro de sulfirio (este último sistema aparte de tener un coste elevado es peligroso por la altísima toxicidad de los compuestos aparte de no ser residual).

Por tanto suele ser preferible el tratamiento directo de las maderas con un insecticida de larga vida residual, de tipo oleoso. El producto se puede aplicar por:


- Impregnación, con brocha o pulverizador, sobre maderas de pequeña sección
- Inyección, previo taladro e inserción de válvulas, seguida de impregnación, en caso de maderas gruesas o pintadas.


En maderas empleadas en la construcción, o labradas, son de temer los producidos por Anobium pertinaz, Xestobium rafovillosum, Lemexillon navale, Lyctus canaliculatos, así como los causados por las termitas y por un pequeño molusco el Taredo navalis, que ataca las maderas bajo el agua de mar, **llamados perforadores marinos.**

DEFECTOS POR SECADO

La siguientes figuras muestran las deformaciones que sufre la madera durante el secado dando lugar a los conocidos defectos por secado.

Caracteristicas externas de la madera

La característica externa de la madera constituye un factor muy importante puesto que influye en la selección de ésta para su empleo en la construcción, ambientación de interiores o ebanistería, ellas son:

Propiedades físicas de la madera

El Color: es originado por la presencia de sustancias colorantes y otros compuestos secundarios. Tiene importancia en la diferenciación de las maderas y, además, sirve como indicador de su durabilidad. Son en general, maderas más durables y resistentes aquellas de color oscuro.

Olor: es producido por sustancias volátiles como resinas y aceites esenciales, que en ciertas especies producen olores característicos.

Textura: esta relacionada con el tamaño de sus elementos anatómicos de la madera, teniendo influencia notable en el acabado de las piezas.

Veteado: son figuras formadas en la superficie de la madera debido a la disposición, tamaño, forma, color y abundancia de los distintos elementos anatómicos. Tiene importancia en la diferenciación y uso de las maderas.

Orientación de fibra o grano: es la dirección que siguen los elementos leñosos longitudinales. Tiene importancia en la trabajabilidad de la madera y en su comportamiento estructural.

Térmico: por su estructura anatómica, así como por su constitución lignocelulósica, la madera es un excelente aislante térmico. La cantidad de calor conducida por la madera varia con la dirección de la fibra, el peso específico, la presencia de nudos y rajaduras y con su contenido de humedad.

Acústico: la madera tiene buena capacidad para absorber sonidos incidentes. Esta propiedad puede ser aprovechada ventajosamente en el diseño de divisiones. El aislamiento acústico puede incrementarse notablemente si se dejan espacios vacíos entre los tabiques o se utilizan materiales aislantes tales como fibra de vidrio, yeso.

Eléctrico: la madera seca es mala conductora de la electricidad. Su conductividad aumentará rápidamente al aumentar su contenido de humedad, a tal punto que la madera saturada puede llegar a ser conductora. La capacidad aislante de la madera tiene numerosas aplicaciones prácticas en la transmisión y protección de la energía eléctrica.

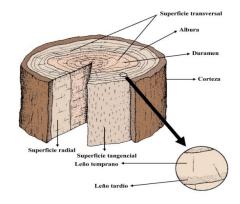
Secodo keonico de la madera

INTRODUCCIÓN.

Todos los procesos relacionados con el crecimiento y desarrollo de un árbol en pie dependen del movimiento del agua en toda su extensión. Una gran parte de esta agua debe ser eliminada antes de transformar la madera en un material útil para la elaboración de productos que puedan cumplir con los estándares de calidad requeridos por el mercado. Toda la problemática relacionada con el movimiento (hinchazón y contracción) de la madera puede ser acortado mediante la aplicación de tecnologías apropiadas.

Uno de los mecanismos para lograr este objetivo es el secado técnico de la madera. Por tal motivo, las propuestas de optimización a implementar en las industrias que poseen secaderos o quieran adquirirlos, están basadas en algunos conceptos básicos sobre la humedad en la madera y los métodos para eliminarla. Para el desarrollo eficiente de un proceso de secado es necesario conocer algunas características de la madera que permitan comprender su comportamiento y la influencia de su estructura anatómica durante los procesos de movimiento del agua del interior de la madera hacia la atmósfera.

En síntesis, el proceso de secado consiste en extraer el exceso de agua que contiene la madera, de una manera adecuada que permita llevarla al contenido de humedad deseado y liberar tensiones, obteniendo un producto estable para el desarrollo de artículos en madera de buena calidad.


Anatomía de la madera

La madera es una materia prima de origen vegetal proveniente de los árboles maderables, también se puede considerar como madera a las ramas, tronco y raíces desprovistos de su corteza, además la madera es un material duro, fibroso, compactos y heterogéneo, con propiedades anisótropas por que tiene diferentes características en sus tres planos de corte (Transversal, radial y Tangencial).

Edisten en el reino vegetal dos grupos botánicos proveedores de madera con aptitud comercial: Conficras y latifoliadas (Ver Figura 1).

Las coníferas pertenecen a las Angiospermas, son llamadas Coníferas por la forma cónica de la mayoría de las especies y por poseer hojas perennes, pertenecen a este grupo todas las especies de pinos y cipreses existentes, son propias de los países con estaciones, han sido introducidas a Colombia y son especies de rápido crecimiento.

Las latifoliadas pertenecen al grupo de las Gimnospermas, son de hoja ancha que caracterizan y hacen frondosas todas las especies de este grupo, son propias de los países cuyo clima es mas o menos uniforma durante todo el año como Colombia, algunas especies son: La Teca, el Caracolí y la Ceiba para climas calados y parea climas más templados se encuentra especies como: El Roble, El Urapan y el Eucalipto.

Las latifoliadas no son usadas para la fabricación de papel por que su estructura es de fibra corta. Para ambos grupos en un corte transversal del árbol se pueden diferenciar la siguientes zonas:

Corteza Externa: Es la capa exterior del tronco, constituida por células muertas cuya función es proteger el árbol de gantes externos.

Corteza interna o Líber: Es la siguiente capa que está constituida por células vivas que tiene como función conducir el alimento (savia elaborada) desde las hojas al resto del árbol.

Cambium: Es una capa invisible macroscópicamente constituida por células vivas, cumple una función muy importante, la cual consiste en generar el crecimiento lateral del tronco, originando hacia adentro anillos de crecimiento que forman el xilema (madera) y hacia fuera genera corteza o líber.

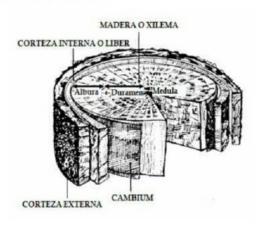
Xilema: Es la madera propiamente dicha la cual esta conformada por la albura, el duramen y la médula.

Albura: Es la parte fisiológicamente activa del xilema, es madera joven, de color claro, tiene como función transportar los nutrientes desde la raíz hasta las hojas (sabia bruta), es más blanda que el duramen, muy susceptible al ataque de agentes xilófagos, de bajas.

Duramen: Madera de la parte interior del tronco. Constituido por tejidos que han llegado a su máximo desarrollo y resistencia (debido al proceso de lignificación.) Decoloración, a veces, más oscura que la albura Madera adulta y compacta.

La duraminización (transformación de albura a duramen) de la madera se caracteriza por una serie de modificaciones de las células, las cuales van perdiendo vitalidad y obstruyéndose con sustancias tales como gomas, resinas, aceites minerales, taninos, etc. Es una zona de coloración más oscura que la albura y resistente en mayor grado frente a los ataques de hogos e insectos. (ver figura 3 Diferencias entre la albura y el duramen).

Medula: Parte central del árbol. Constituida por tejido flojo y poroso. Tiene un diámetro muy pequeño. Madera vieja y normalmente agrietada. Se suele desechar en los procesos de elaboración de la madera.


Anillos de crecimiento: Cada anillo corresponde al crecimiento anual, consta de dos zonas claramente diferenciadas:

- **Una formada en primavera o madera temprana:** Predominan en ella los vasos gruesos que conducen la savia bruta hasta las hojas (tejido vascular). Color claro, pared delgada y fibras huecas y blandas.
- **Otra formada en verano o madera tardía:** Tienen los vasos más pequeños y apretados. Sus fibras forman el tejido de sostén. Color oscuro denso y fibras de paredes gruesas.

En zonas tropicales (o en las zonas donde no se producen, prácticamente, variaciones climáticas con los cambios de estación, y la actividad vital del árbol es continua), no se aprecian diferencias entre las distintas zonas de anillos de crecimiento anual. Su suma, son los años de vida del árbol. Debido a la forma tronco-cónica del árbol, los anillos anuales se deben contar en el tronco, en zona más próxima a las raíces.

Estos anillos pueden ser anuales o estacionales, lo anuales son típicos de zonas boreales y los estacionales de zonas tropicales. Células que se desarrollan en dirección radial, o sea, perpendiculares a los anillos de crecimiento. Ejercen una función de trabazón. Almacenan y difunden las materias nutritivas que aporta la savia descendente (igual que las células de parénquima). Contribuyen a que la deformación de la madera sea menor en dirección radial que en la tangencial. Son más blandos que el resto de la masa leñosa. Por ello constituyen las zonas de rotura a comprensión, cuando se ejerce el esfuerzo paralelamente a las fibras. (Ver figuras 2).

Figura 2. Anillos de Crecimiento

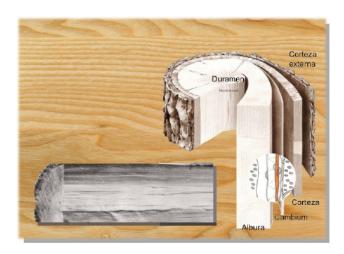
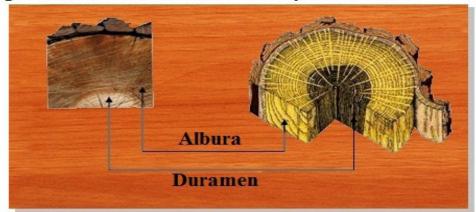



Figura 3. Diferencia entre la albura y el duramen

Traqueidas: Son un conjunto de células que sirven como elemento de sostén y conducción en las coníferas. En sus paredes celulares se encuentran las puntuaciones, sobretodo en las caras radiales.

Vasos leñosos: Son células dispuestas en dirección longitudinal, responsables de la conducción ascendente del agua y sustancias minerales y se presentan como tubos largos fácilmente observables. Estas células poseen en su pared unos orificios denominados puntuaciones que sirven para el intercambio de líquidos y gases entre células adyacentes

Fibra: Es el conjunto de células mas numerosas, dispuestas en sentido del eje del árbol y rodeando los vasos. A la orientación que tiene las células (fibra) de la madera en dirección al eje del árbol se denomina "grano". Se pueden definir los siguientes tipos de grano:

- **Grano recto:** Cuando los elementos se disponen en sentido paralelo entre si y respecto al eje del árbol. Las maderas con este tipo de fibra presentan gran resistencia mecánica pero un diseño poco atractivo.
- **Grano ondulado o inclinado:** cuando los elementos se disponen paralelos entre si pero describiendo una trayectoria sinuosa respecto al eje del árbol. Estos movimientos pueden presentarse en los planos radiales tangenciales
- **Grano entrelazado o espiralado:** las fibras presentan una inclinación respecto al eje del árbol, en algunos periodos de crecimiento pueden tomar un sentido y en otros uno contrario, presentan diseños similares a las maderas que tienen fibra inclinada
- **Grano revirado o entrecruzado:** Las fibras mantienen una inclinación constante a derecha o izquierda con mayor o menor ángulo, desarrollándose en sentido helicoidal respecto del eje del árbol. Las maderas con este tipo de grana tienen gran tendencia a rajarse.

Textura: Es una palabra que define el mayor o menor diámetro de los elementos constitutivos de la madera. En el caso de coníferas diámetro de las Traqueidas y en el caso de las latifoliadas el diámetro de los vasos. Se pueden definir:

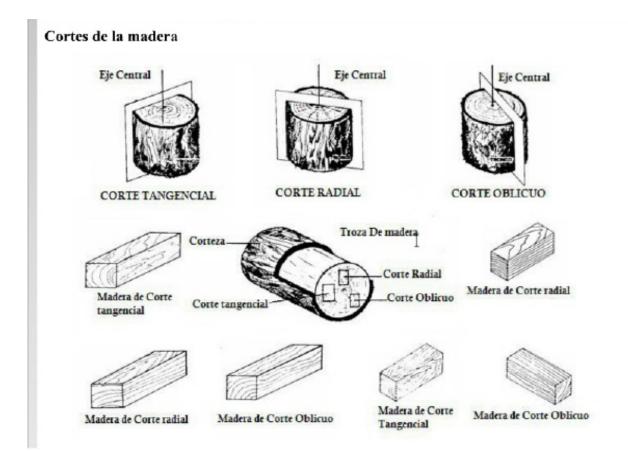
Textura gruesa: Cuando los elementos se pueden observar a simple vista, pues sus tamaño es muy grande (Nogal, Roble, algunos pinos).

Textura media: Cuando los elementos tienen tamaño intermedio (Perillo, Tolua). Textura fina: cuando los elementos tiene tamaño muy pequeño (Eucaliptos, Nazareno, Teca)

Coder de la madera

El tronco del árbol puede cortarse en el sentido de su eje de crecimiento de tres maneras distintas que se describe a continuación:

Corte Radial (Rd):


Este tipo de corte lleva la dirección de los radios medulares, o sea que el corte parte los anillos de crecimiento pasando o no por el centro. Para elementos estructurales utilizados en construcción, el corte radial es el más adecuado porque las piezas presentan menos deformaciones y mayor resistencia a ala mecánica.

Corte Tangencial (Tg):

Este corte es perpendicular a la dirección de los radios medulares y tangente a los anillo de crecimiento.

Corte Transversal (Tv):

Es el corte que se realiza perpendicular al eje longitudinal del tronco.

SDGEJA Subdirección General de Educación de Jóvenes y Adultos

Propiedades mecánicas de la madera

Las fuerzas expresadas por unidad de área son conocidas como esfuerzos mecánicos. Existen cuatro tipos fundamentales de esfuerzos a los que puede estar sometida una pieza de madera: esfuerzo de compresión, de tracción, de flexión y de corte o cizalladura. Los factores que afectan el comportamiento mecánico de la madera son el tipo de corte y los nudos siendo estos últimos los que causan mayor problema.

Compresión: es la acción de dos fuerzas que actúan sobre una pieza de madera y tienden a comprimirla, Son necesarias dos fuerzas opuestas que actúan hacia el interior de la madera en la misma dirección y en sentidos contrarios, ejemplo: las columnas de una estructura en madera están sometidas a esfuerzos de compresión.

Tracción: Es la acción de dos fuerzas opuestas, actuando hacia el exterior de cuerpo, en la misma dirección y sentidos opuestos tendiendo a separar o reventar las fibras de la madera. Ejemplo: las verticales de una cercha para un techo.

Flexión: es cuando las fuerzas que actúan sobre una pieza de madera tienden a doblarla. Para que se produzca la flexión serán necesarias por lo menos tres fuerzas, ejemplo: una viga de madera esta sometida a flexión cuando soporta su propio peso.

Corte o Cizalladura: es la acción de dos fuerzas paralelas en sentido contrario que tienden a cortar una pieza madera.

Propiedader Organolépticar de la madera

Son aquellas que se pueden observar con los sentidos y permiten identificar diferentes especies.

Color: representa importancia decorativa, variando desde casi blanco al negro, lo que está en directa relación con la gran diversidad de especies arbóreas existentes.

Textura: se refiere a la impresión visual producida por las dimensiones, distribución y porcentaje de los elementos estructurales de la madera

Olor: algunas maderas presentan un olor típico, debido a la presencia de sustancia volátil.

Veteado: figura que se aprecia en los cortes longitudinales y que producen las diferentes tonalidades de la madera en los anillos.

Grano: se refiere a la disposición y dirección de los elementos constituyentes del leño en relación al eje del árbol.

Brillo o lustre: es la capacidad de la madera de reflejar la luz.

VENTAJAS TÉCNICAS DEL SECADO DE LA MADERA

El secado proporciona una materia prima de mejor calidad. Las principales ventajas técnicas que se obtienen con un correcto secado de la madera son:

Resistencia a la pudrición: Si la madera se seca por debajo del 20% de CH; se vuelve inmune contra el ataque de hongos y mohos causantes de la pudrición.

Resistencia a la mecánica: Al secar la madera por debajo del 30% de contenido de humedad aumenta la resistencia mecánica, lo que permite al ingeniero determinar en forma exacta el uso de la madera como elemento estructural.

Conservación de formas y dimensiones: El secado previo permite la estabilización en formas y dimensiones de la madera, minimizando los cambios que se presentan debido a la variación del CH. Reducción de peso: El secado reduce considerablemente el peso de la madera, lo que facilita el transporte y manipulación.

Inmunización: La mayoría de los métodos de inmunización de la madera exigen que esta esté seca, para que pueda absorbe las sustancias inmunizantes y la protección contra los agentes destructores sea efectiva.

Conservación del color: El color igual en todas las piezas de madera, permite una calidad uniforme al fabricar elementos en serie con acabado natural. Mejor adherencia para acabados: Como pegantes, pintura y capas de acabado en general, se obtiene con madera seca.

Mejor calidad de maquinado: Al maquinar madera húmeda, sus fibras se rompen de manera prematura y desigual, proporcionando un acabado irregular y desastillado en la superficie, la viruta húmeda se adhiere a la herramienta, disminuye el rendimiento del corte y entorpece el desplazamiento de las piezas en las máquinas de banco.

FACTORES FISICOS EXTERNOS DEL SECADO DE LA MADERA

En el proceso del secado térmico el aire calienta la madera y evacua la humedad que se encuentra en ella. En necesario conocer una serie de características y propiedades físicas del aire y de la madera para comprender este proceso, donde el elemento primordial es el aire, el cual debe tener unas condiciones para poder realizar un buen secado; estas condiciones son:

Humedad Relativa: es la cantidad de agua en forma de vapor expresada en porcentaje que contiene el aire y se expresa como la relación que existe entre la presión que ejerce el vapor de agua contenido en el aire a determinada temperatura y la presión que ejerce cuando el aire a la misma temperatura esta saturado de vapor de agua.

Temperatura: A medida que aumenta la temperatura del aire, también aumenta su capacidad para secar o absorber humedad. Para aumentarle la temperatura al aire es necesario suministrarle energía calórica.

Las fuentes corrientes de esta energía son: la electricidad, el ACPM, el gas, el carbón, la leña y el sol.

Velocidad del Aire: El aire caliente debe circular a través de las pilas de madera a una velocidad tal que garantice la evacuación del agua contenida en la madera. El aire en general es propulsado por medio de ventiladores eléctricos que consumen menos de una cuarta parte de la energía eléctrica requerida para calentar el aire, la velocidad del aire se calcula a partir del caudal de los ventiladores y de la distribución de la madera dentro de la cámara Un buen secadero debe tener una velocidad mínima del aire a través de las pilas de 2 a 3 metros por segundo y se mide por medio de un anemómetro.

Presión del Aire: La presión del aire debe ser suficiente para que circule de manera uniforme a través de toda la madera distribuida dentro de la cámara. Se mide por medio de un manómetro.

SDGEJA Subdirección General de Educación de Jóvenes y Adultos

PROPIEDADES FÍSICAS DE LA MADERA (Factores internos del secado)

La Densidad: Es la relación entre la masa y el volumen de una pieza de madera. Se acostumbra a tomar la masa como el peso, la densidad se mide en gramos sobre centímetros cúbicos (gr/cm³). Según la especie las madera varían de densas o pesadas a livianas.

- **Densidad Anhidra o Seca al Horno:** Es la relación entre el peso y el volumen de la madera en estado Anhidro, Es decir con CH cero.
- **Densidad Seca al Aire:** Es la relación entre el peso y el volumen correspondiente a un CH de equilibrio con el medio.
- **Densidad Verde:** Es la relación entre el peso y el volumen verde CH mayor al 30%
- **Densidad Básica:** Es la relación entre el peso Anhidro y el volumen verde. La densidad básica es la menor de las cuatro densidades definidas y es la que se usa en la práctica pues las condiciones en las cuales se basa permanecen estables para cada especie de madera.

ESQUEMA GENEREAL DE TIPOS DE DENSIDADES, MADERAS Y USOS

Tipos de densidad	Madera	Uso
		Molduras, enchapes, cielo rasos, artesanías.
		Muebles: Comedor, bibliotecas, closets, pasamanos, cocina.
		Pisos, escaleras, muebles para interperie.

Higroscopiedad de la madera: Se dice que la madera es un material higroscópico porque gana o pierde agua en sus paredes celulares, este fenómeno genera cambios volumétricos, cuando gana agua se hincha y cuando pierde se contrae.

Este cambio de volumen se lleva a cabo en las tres dimensiones básicas: En el sentido longitudinal es pequeña del orden 0.1% de la dimensión verde; en el sentido radial puede ser del 3 l 10% de la dimensión verde; y en el sentido tangencial puede ser de $1\frac{1}{2}$ a 2 veces mayor que en dirección radial. La hinchazón se calcula con la siguiente fórmula:

 $HI = DV - DS \times 100$ DS

Donde:

HI = Hinchazón DV = Dimensión Verde (Tangencial, Radial o Longitudinal)

DS = Dimensión Seca (Tangencial, Radial o Longitudinal).

La contracción se calcula con la fórmula: C = DV - DS x 100 DS

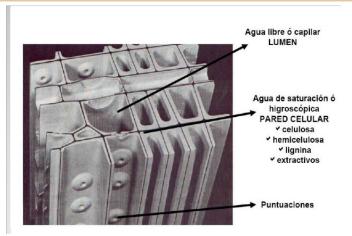
(LIO) bebenud eb la madera contenido de humedad (CII)

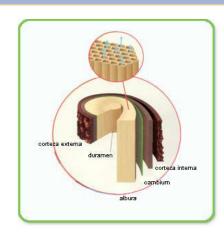
El contenido de agua que posee un árbol recién cortado depende de varios factores entre los que se destacan las características intrínsecas de la especie, la época del año en que se produce el apeo o tala y la región o lugar de procedencia.

Las madera menos densas o más livianas, al ser más porosas, por lo general contienen mayor contenido de agua que las maderas más densas o pesadas. Lo mismo ocurre entre la albura y el duramen; la albura al estar por células que tienen como función la de conducción de agua, presenta un contenido de humedad (CH) mayor que el duramen.

El contenido de Humedad (CH) de las maderas verdes puede ser del 200% al 400% para maderas livianas como el balso y la Ceiba bonga que tienen paredes celulares delgadas y cavidades grandes.

Las maderas densas como el guayacán y el algarrobo, presentan paredes gruesas y pequeñas cavidades celulares y su contenido de humedad verde es menor que el 100%. El agua contenida en la madera se encuentra bajo tres formas como agua libre, agua de saturación o higroscópica y agua de constitución.


* Para el proceso de secado solo, se tienen en cuenta los dos primeros tipos de agua.


Agua libre: es el agua que se encuentra en las cavidades de las células o lúmenes. La cantidad de agua libre que puede contener una madera está limitada por su volumen de poros. Esta agua se va perdiendo hasta un punto denominado Punto De Saturación De Las Fibras (PSF) que corresponde a contenidos de humedad de la madera, entre 21 y 40%, dependiendo de la especie de que se trate. Cuando la madera alcanza este punto, ya no existe más agua en las cavidades celulares. Durante esta fase del secado o pérdida de agua, la madera no presenta cambios dimensionales ni alteraciones en sus cualidades físico mecánicas.

Agua de Saturación o Higroscópica: Es el agua que se encuentra en las paredes celulares. Durante el proceso de secado el agua de saturación sale con mayor lentitud que el agua libre y provoca cambios dimensionales conocidos como contracciones. La pérdida de agua se produce hasta llegar a un equilibrio higroscópico entre la madera y el ambiente que la circunda.

Agua de Constitución: forma parte integral de la estructura molecular que compone la fibra de la madera o cuerpo leñoso de la madera. Sólo se puede evacuarse mediante la combustión esta.

Contenido de Humedad de Equilibrio (CHE): Es el contenido de humedad que la madera ha logrado hasta equilibrarse con la humedad relativa del aire y de la temperatura del ambiente, varía de un lugar a otro. En Colombia se pueden encontrar valores desde el 12% en Cúcuta y hasta el 18.5% en la Costa Pacifica.

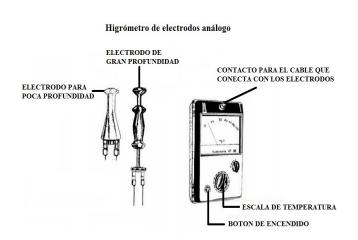
MÉTODOS DE DETERMINACIÓN DE LA HUMEDAD EN LA MADERA

Método de balanza y estufa o de la doble pesada. Este método considera a la madera totalmente seca cuando al secarla en estufa u horno a 100 °C ± 2 °C alcanza peso constante. El contenido de humedad de una madera se define como el peso del agua presente en una pieza de madera, expresada en función del peso desea pieza al estado seco o anhidro. Se expresa en porcentaje y se calcula mediante la siguiente formula.

 $H(\%) = Ph - Ps \times 100$

Ps Donde: H (%) = Humedad expresada como porcentaje de sus peso anhidro.

Ph = Peso de la madera en estado verde o inicial.


Ps = Peso de la madera en estado anhidro.

Método eléctrico. Los métodos eléctricos de medición del CH de la madera se basan en las diferencias de las propiedades eléctricas de la madera humedad y la madera seca. Los instrumentos para medir la humedad por medio des te método se denominan higrómetros o xilohigrometros existen de 2 tipos de electrodos y de contacto por radiofrecuencia, los de tipo electrodos son llamados destructivos ya que dichos elementos se introducen en la madera dejando la marcas en las piezas medidas, los de contacto o radiofrecuencia son llamados no destructivos ya que se apoyan en la superficie de la madera sin perforarla.

El higrómetro de electrodos digital es de de muy fácil manejo, para obtener una medición confiable de la humedad de la madera asegúrese de seguir las siguientes instrucciones:

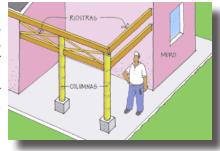
- Acople el cable del martillo al instrumento de medida.
- Calibre el higrómetro a la temperatura del medio ambiente circundante.
- Calibre el higrómetro según la especie.
- Inserte las agujas con ayuda del martillo a la pieza de madera que se desee medir; una distancia prudencial

Oprima la tecla "test" y obtendrá la el contenido de humedad al cual se encuentra la pieza de madera que desea medir.

RECOMENDACIONES PARA MEDIR LA HUMEDAD

Para un control permanente de la humedad de la madera, se deben utilizar los Xilohigrometros o medidores de humedad. Para asegurar la calidad de las lecturas se debe implementar una rutina de calibración anual para los instrumentos de medición de la humedad. La calibración se realizará considerando cada una de las especies de madera que se utilizaran.

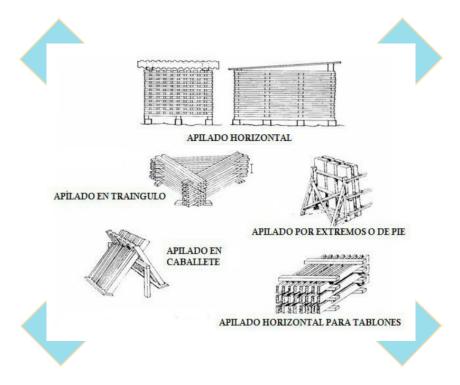
SISTEMAS DE SECADO


Secado natural de la madera.

Es la forma mas simple de secar la madera. Consiste en la exposición directa de la madera al medio ambiente. La temperatura, la humedad relativa, la velocidad y la presión del aire ambiente llevan a cabo el secado hasta el contenido de humedad de equilibrio CHE del lugar.

Secado natural de la madera rolliza Se llama madera rolliza la troza de sección circular que queda cuando el árbol se tala y se trocea. Desde el momento mismo de la tala la madera inicia su proceso de secado y para acelerar el proceso se hacen las siguientes recomendaciones:

- Las ramas y las hojas del árbol talado en tierra, deben conservarse durante una o dos semanas con el fin de acelerar la salida de los líguidos que contiene la madera.
- Descortezar la madera para que esta presente una mayor superficie expuesta al aire libre lo cual acelera el secado.
- Como la salida del agua de la madera es más rápida en sentido de las fibras, se debe cortar la madera en longitudes tan cortas como lo permitan las dimensiones de la madera que se busca obtener. El corte de la madera en varios pedazos debe hacerse con precaución puesto que aumenta la tendencia de la madera a rajarse.
- Algunas maderas rollizas que han sido sometidas a flotación en agua alcanzan una distribución más homogénea de la humedad en su interior y su comportamiento mejora durante el proceso de secado.
- Secado Natural de la madera aserrada El secado natural de la madera serrada se realiza en patios de secado. Los patios de secado son terrenos planos de piso duro y compactado, situado en terrenos no inundables que posean buen drenaje libre de obstáculos y vegetación que impidan la circulación del viento.


Un apilado correcto es fundamental para tener un buen resultado en el secado. Entre las pilas se deben dejar pasadizos de al menos 60 cms y corredores suficientes para permitir la circulación de los medios de transporte de la madera. Si el sistema de transporte lo permite, por ejemplo, cuando se utilizan montacargas, es posible disponer de una pila sobre otra, conformando volúmenes de unos 4 metros de alto por 1.20 de ancho por el largo de las piezas. Cuando las pilas son altas debe prevenirse el volcamiento utilizando riostras o diagonales que amarren las pilas unas con otras.

Recomendaciones:

- Cuando se va a secar en patio, madera bien aserrada y con alto contenido de humedad, es aconsejable no exponerla al sol directo para evitar grietas y decoloración.
- Las maderas muy húmedas deben tratarse con un baño de pentaclorofenato de sodio al 2% para que la preserve contra el ataque de hongos.
- Para equilibrar la salida del agua, que puede ser 3 veces mayor en el sentido de las fibras, las testas de las piezas se cubren con una capa de sellador para evitar rajaduras en los extremos y secado disparejo en las piezas de madera.
- Las pilas deben hacerse sobre bases o fundaciones de hasta 50cm de alto según el tipo de piso; que las separen del terreno par evitar que la madera absorba la humedad del suelo y para crear corrientes ascendentes de aire que contribuyan al secado cuando no hay viento.
- Las piezas deben separarse entre si a una distancia igual a su espesor.
- Las pilas deben conformarse con madera de la misma especie, del mismo espesor y si es posible con el mismo contenido de humedad.

SISTEMAS DE APILADO DE LA MADERA ASERRADA

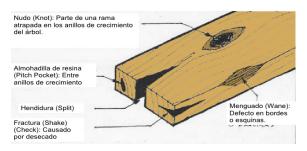
Apilado horizontal: Es el sistema más común, puesto que se presta al secado de todos los tipos corrientes de piezas de madera. Es simple, eficiente y ocupa poco espacio. Las pilas ocupan una superficie de 3m x 1.20m y su altura esta limitada a unos 2.5m.Las pilas se cubren con un techo que proteja la madera de la lluvia y los efectos nocivos del sol directo.

El techo debe sobresalir unos 30cm de los costados de la pila de madera. Se deben colocar separadores en los extremos de las piezas de madera, para reducir las rajaduras y las grietas en las testas. Las dimensiones de los separadores y la distancia entre ellos deben ser consecuentes con el espesor con el espesor y la cantidad de piezas que soportan. Por ejemplo: para tablas de 3cm de espesor en una pila de 2 metros de altura, pueden utilizarse separadores de 2.5 x 2.45 cm.

El conocimiento de la estructura de la madera permite conocer su influencia en el proceso de secado.

Las diferencias anatómicas que tiene las distintas especies de madera tienen una clara influencia en el flujo de la humedad en el interior de las mismas. Debe diferenciarse entre el movimiento de agua libre, el de agua de saturación y el de agua de constitución.

DEFECTOS DE LA MADERA



Los defectos de la madera afectan:

- 1. La fuerza: Cuan resistente sera a la fuerza aplicada
- 2. La apareincia: su belleza como material de terminación
- 3. Usos: Mdera para uso estructural o mueblería
- 4. Su gradación: clasificación para la venta.

.

La Madera Defectos de la Madera

Un defecto es cualquier irregularidad o imperfección de la madera, que afecta las propiedades físico mecánicas o químicas determinando generalmente una limitación en su uso o aplicaciones.

Defectos naturales:

Acebolladura: Es la separación del leño entre dos anillos de crecimiento consecutivos. Aparece como escamas superficiales en las caras tangenciales de la pieza de madera.

Colapso: Disminución del espesor debido a superficies irregulares y fibra de madera retorcida. Se presenta en maderas muy húmedas al comienzo del secado.

Arista faltante: Es la falta de madera en una o más aristas de una pieza de madera aserrada y escuadrada. Se presenta por lo general en piezas obtenidas en la zona exterior del tronco.

Excentricidad del corazón: Es un defecto donde el corazón o médula se halla fuera del centro del corazón del tronco. Se presenta en árboles que crecen en zonas muy faldudas o pendientes ya que éste opone resistencia a la gravedad en su período de crecimiento.

Nudo: Es el área de tejido leñoso resultante de la huella dejada por una rama, cuyas características organolépticas y propiedades son diferentes a las de la madera circundante.

Alabeo: Un alabeo es la deformación que puede experimentar una pieza de madera por la curvatura de sus ejes longitudinales, transversales o ambos. Lo casos más frecuentes son el abarquillado, la arquedura, la encorvadura y la torcedura.

- Abarquillado: Alabeo de las caras en sentido transversal.
- Arqueadura: Es el alabeo o curvatura de las caras en sentido longitudinal.
- Encorvadura: Es el albeo de los cantos en sentido longitudinal
- Torcedura: Es el alabeo que presenta una pieza de madera donde sus esquinas no se encuentran en el mismo plano.

La siguiente figura demuestra las deformaciones que sufre la madera durante el secado dando lugar a los conocidos defectos por secado.

Causas y soluciones posibles para defectos por secado.

I	iones posibles para de	· VRIII.	
DEFECTO Y DESCRIPCION	CAUSAS CORRIENTES	SOLUCIONES POSIBLES	
Secado desigual: Valores diferentes del CH en diferentes puntos de la pieza.	Mala circulación del aire a través de la madera. Secado demasiado rápido.	Calibrar el proceso de secado. Controles de la cámara y programa de seca- do. Homogeneizar la circulación del aire en toda la cámara.	
Secado desigual bajo separadores.	Separadores demasiado gruesos.	Separador delgado, poco punto de contacto con la madera.	
Rajaduras superficies y externas. Evitar esta madera para acabados delicados.	Aire demasiado seco y veloz. Fugas de aire y calor en la cámara.	Aumentar la humedad relativa. Disminuir la temperatura y la velocidad del aire. No humedecer la medera dentro de la chamarra. Sepillar la madera. Controlar el programa de secado, sobre todo al principio.	
Rajaduras en los extremos	Deficiencia en el secado al aire. El agua se pierde demasiado rápido por testas.	Sellar testas. Colocar separador en el extremo de la pila.	
Rajaduras internas. No siempre visibles del exterior.	Fuerzas contrarias al interior y al exterior de las piezas.	Programa de secado suave al comienzo. Bajar temperatura.	
Endurecimiento o apanalado: Endurecimiento en la superficie por conformarse en ella una costra o escama.	Tensiones ocacionadas durante el secado crean la costra que impide la migración del agua. Acondicionamientos finales excesivos crean endurecimiento irreversible (Por ejemplo HR mayor del 90% y temperaturas de 80°C durante 6 horas)	Aumentar RH. Disminuir velocidad del aire. Disminuir temperatura final. Controlar acondicionamiento.	
Colapso: Disminución del espesor debido a superficies irregulares y fibra de madera retorcida. Se presenta en maderas muy húmedas al comienzo del secado.	Cavidades celulares de dura- men sin aire. Grietas internas a menudo ovaladas	Temperatura inicial menor de 50°C. Acondicionamiento: Vapor a 85°C o ebullición de 4 a 6 horas después del secado. Secar de nuevo con HR alta y con baja tem- peratura.	
Alabeos: Curvaturas del eje longitudinal de la pieza de madera.	Tensiones internas del árbol. Acerrado y apilado deficiente.		
Abarquillado: Madera encocada. Curvatura segun eje transversal de la pieza. (En el senti- do del ancho)	Medra de Duramen. Corte tangencial.	Presecado al aire libre. Programa suave. Buen apilado.	
Encorvadura: Curvatura sobre un canto, alo largo de la pieza. Arqueadura: Forma de puente. Curvatura sobre la ara a lo largo del eje longitudinal.	Madera Joven. Árboles torcidos que crecen en pendientes.	Acondicionamiento.	
Torcedura: Las esquinas de las piezas no se en- cuentran sobre un mismo plano.	Nudos. Fibra torcida y distorcionada	Buen apilado. Crear restricciones mecánicas durante el secado.	

RECTFICADO, AFILADO Y MANTENIMIENTO DE HERRAMIENTAS DE CORTE GUIADO Y LIBRE

HERRAMIENTAS DE CORTE CUIADO Y UBRE

Corte guiado: se usa hoja de acero templado con filo en bisel ligeramente cóncavo. Su diseño considera una cubierta o contrahoja, y con ella evita que se levanten astillas en la madera al afinar o pulir. Estas herramientas se pueden agrupar, a su vez, en dos subgrupos: cepillos y desbastadores.

• Cepillos: pueden ser de madera o metálicos, dentro de los cuales está la garlopa para cepillar tablas largas. El garlopín, usado para desbastar. El cepillo, para desbastar, pulir y afinar. El cepillo curvado de base convexa, utilizado para cepillar interiores curvos. El cepillo de dientes, en tanto, sirve para generar asperezas en las superficies que han de encolarse (facilita el agarre).

• Ceopillos para desbastar: su diferencia con respecto a otros cepillos es tener una caja cuya base deja libre todo el ancho de la hoja, la cual es estrecha por arriba y no lleva contrahoja, de modo que el corte puede tener la forma de la moldura perfilada en el filo de la hoja.

Entre los desbastadores más importantes se encuentra el guillame, usado para rebajar la madera en forma escalonada. Este rebajador es de mayor tamaño que el anterior y de desbaste graduable.

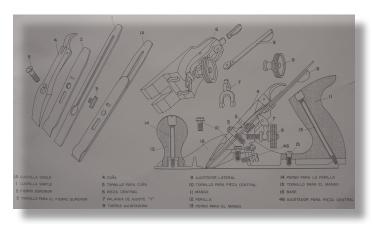
Existe también el bocel, que sirve para

realizar desbastes de media caña, el acanalador y el machimbrador, utilizados para hacer canales, ranuras y guías en la madera. Estas herramientas se usan luego del cepillado de la madera.

Corte libre: posee una hoja de acero templado con filo en un extremo, que se va adelgazando longitudinalmente hasta terminar en punta, en la que se inserta un mango de madera. Entre ellas se encuentran:

• Formón: hoja de acero de 3 a 4 mm. de espesor con los bordes biselados, lo que permite una mayor penetración en esquinas. Se usa para cortar la madera en cualquier dirección, hacer rebajes, ajustes, encajar bisagras, y cerraduras, entre otras acciones.

- Escoplo: parecido al formón, se diferencia en tener una hoja más angosta y robusta. Se usa para cortes profundos, mortajas y escopleaduras para ensamblar. El escoplo, al igual que el formón, se afila en un ángulo de 35°, lo que permite tener cantos fuertes para trabajos duros.
- Gubia: se caracteriza por tener una hoja curvada y vacía, permitiendo realizar cortes en aro o círculo.



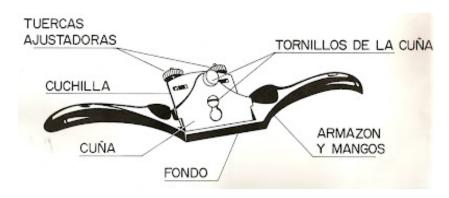
Cepillo metálico

El cepillo metálico de carpintero se compone de más o menos 18 piezas fundamentales.

Se hace necesario el mantenimiento preventivo a esta herramienta, a continuación encontraremos el despiece del cepillo de carpintero.

- 1. CUCHILLA DOBLE: Se le llama cuchilla doble (doblar el cepillo), al ensamble que se logra uniendo la cuchilla simple y el fierro superior también llamado contra plantilla, mediante el acercamiento de la contra plantilla al filo de la cuchilla simple para logra un mejor pulimento en la madera (truco que sirve para pulir madera a contra de las fibras) y mediante el distanciamiento de la contra plantilla del filo de la cuchilla logramos un mayor desbaste de madera.
- 2. CUCHILLA SIMPLE: Esta pieza está hecha de acero, con la suficiente dureza para labrar madera.
- 3. TORNILLO PARA EL FIERRO SUPERIOR: Es el tornillo con que se logra la sujeción mediante presión de la cuchilla simple con la contra plantilla.
- 4. CUNA: También llamada prensa y sujeta la cuchilla doble al bastidor (pieza central) del cepillo mediante presión.
- 5. TORNILLO PAR CUÑA: Tornillo que está roscado al bastidor (pieza central) del cepillo, y que hace las veces de eje donde se sostienen la cuchilla doble y la cuña, con la graduación de este tornillo se le da mayor o menor presión a la cuña.
- 6. PIEZA CENTRAL: También llamada bastidor, porque es la pieza a la cual se sujetan la gran mayoría de elementos de calibración del cepillo.
- 7. PALANCA DE AJUSTE "Y": Esta pieza hace subir y bajar la cuchilla doble para darle mayor o menor desbaste de viruta a la madera.
- 8. TUERCA AJUSTADORA: Esta pieza gira a la derecha o a la izquierda sobre un tornillo roscado, dándole movimiento (arriba, abajo) a la palanca ajustadora en "Y".

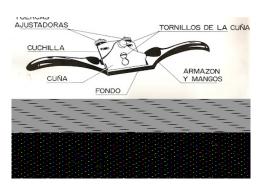
- 9. AJUSTADOR LATERAL: Es una palanca que está sujetada al bastidor mediante un eje, para permitir movimiento a derecha o izquierda, según necesite el operario con el fin de calibrar paralelamente la cuchilla doble a la base del cepillo.
- 10. TORNILLOS PARA PIEZA CENTRAL: Estos tornillos fijan el bastidor a la base del cepillo, permitiendo calibrar el bastidor con la boca del cepillo.
- **11.** MANGO: Es la pieza de donde el operario sujeta el cepillo para su total control.
- 12. PERILLA: Esta pieza ayuda al operario a dirigir el cepillo en la dirección que se requiera.
- 13. PERNO PARA EL MANGO: Es el tornillo que ajusta el mango a la base del cepillo.
- 14. PERNO PARA LA PERILLA: Es el tornillo que fija la perilla con la base del cepillo.
- 15. TORNILLO PARA EL MANGO: Es el tornillo que complementa la sujeción del mango con la base del cepillo.
- **16.** BASE: Es la pieza más grande del cepillo, y es la que se desliza por la superficie de madera a labrar.

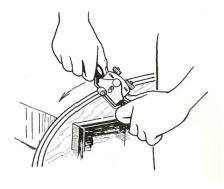

AJUSTADOR PARA PIEZA CENTRAL: Es el tornillo que complementa y calibra el bastidor con la base del cepillo.

LEVA: Esta pieza ayuda a la acción de presión de la cuña.

SDGEJA Subdirección General de Educación de Jóvenes y Adultos

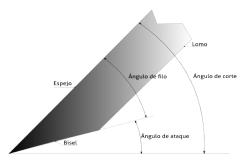
CEPILLOS DE VUELTA O DE CODO PLANO Y CURVO (PARTES Y USOS)


PARTES DEL CEPILLO DE VUELTA O DE CODO


Los cepillos de vuelta o de codo, desarrollan la misma función de los cepillos metálicos (pulir y desbastar superficies), la diferencia es que el fondo o base es mucho más corta, permitiendo al cepillo seguir superficies curvas y cóncavas.

LOS CEPILLOS DE VUELTA SE CLASIFICAN EN DOS TIPOS PRINCIPALES:

1. Cepillos de fondo cóncavo o curvo.



2. Cepillos de fondo plano o recto.

Los cepillos de vuelta planos también se usan para achaflanar cantos redondos. Las cuchillas que utilizan estos cepillos son del mismo material que las del cepillo metálico y se afilan de la misma manera.

ÁNGULOS DE LA CUCHILLA PARA CEPILLO Y FORMONES.

RECTIFICADO DE HERRAMIENTAS DE CORTE GUIADO Y UBRE

EL ESMERIL: Es parte fundamental en el rectificado de las herramientas como cuchillas para cepillo y formones, previo al asentado en la piedra para afilar.

Medidas de seguridad

Careta para esmerilar plástica: Cuenta con suspensión de ajuste a matraca, proporciona protección a la cara contra partículas, polvos y es resistentes a impactos.

Mascarillas: Necesarias para no inhalar los residuos de metal que resultan de la fricción de la herramienta a rectificar con la muela de esmeril.

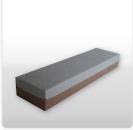
TIPOS DE PIEDRAS PARA AFILAR HIERRAMIENTAS DE CORTE GUIADO Y LIBRE.

La cuchilla no sería una buena herramienta sin un afilado correcto, por ello siempre es bueno tener una piedra para afilar a mano.

La piedra de afilar (antiguamente también llamada piedra de agua; piedra de esmeril) es un instrumento empleado en la mejora y mantenimiento de los "filos" de los cuchillos y otros utensilios con filo, como las tijeras, los cinceles.

Se suelen comercializar con diferentes tamaños dependiendo de su uso específico, generalmente las portátiles son de forma ovalada. Se encuentran con diferentes grados, dependiendo del grano de la piedra, por regla general un grano fino corresponde con una piedra de afilar densa y al afilar elimina menos material del filo y permite hacer ajustes finos, mientras que un grano mayor corresponde a una piedra más porosa, elimina más material del filo.

El grado de las piedras de afilar se proporciona en números, éstos indican la densidad de grano en la piedra.


Tipos de Piedras para afilar

Según el material del que están hechas setien en piedras de material sintético, o la spiedras de agua naturales.

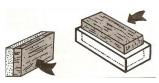
Piedras de material sintético

Suelen estar elaboradas de materiales cerámicos abrasivos como el carburo de silicio (carborundum) u óxido de aluminio (corundum). Se suelen comercializar piedras de este tipo con dos tipos de grano, fino por un lado y grueso por otro.

Piedras de agua

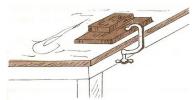
Generalmente se extraen de minas, una de las más afamadas en Europa son Ardenas en Bélgica que tienen un color característico gris-amarillento, también las hay de origen americano llamadas piedras "arkansas". Generalmente una buena piedra de afilar es de precio bastante alto debido a la dificultad de encontrar buenas vetas de material. La denominación piedra de agua se hace ya que es habitual añadir agua para eliminar los residuos del afilado, esta práctica ha hecho que se acabe denominando piedra de agua.

Piedras Japonesas

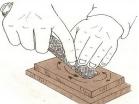

Las piedras japonesas son muy reputadas y tienen una larga tradición debido a la existencia de minas naturales que las proporcionan, son de grano fino y generalmente emplean agua (en aceite se estropea). Las más afamadas provienen del norte de Japón en el distrito de Narutaki. Las variantes disponibles en el mercado son: el ara-to o "piedra ruda", el naka-to o "piedra media" (imagen) y el shiage-to o "piedra de acabado".

Afilado de las cuchillas de cepillo formones:

PROCESO PASO A PASO:

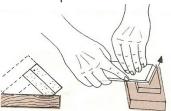

a) Seleccione la superficie para iniciar el desbaste, ésta debe ser la de grano más grueso.

c) Desarme el cepillo, afloje el tornillo que sujeta el hierro contra el contra hierro.


b) Ajuste la piedra en el banco de trabajo y riegue aceite o petróleo por toda la superficie, preferiblemente aceite quemado.

d) Agarre por arriba la cuchilla con una mano u con la otra, haga presión sobre la hoja.

e) Incline la herramienta sobre la superficie de la piedra; tome como referencia para la inclinación el ángulo que trae el bisel del filo.



f) Deslice la herramienta por toda la superficie hasta conseguir sacarle rebaba en el borde del filo, evite hacer hueco en la superficie de la piedra.

g) Cerciórese si se ha formado rebaba, palpando suavemente la parte del filo. Evite cortaduras, trabaje con precaución.

h) Voltee la piedra por la cara fina y deslice la herramienta por toda la superficie, teniendo cuidado de presionar la parte plana del hierro firmemente contra la piedra.

i) Deslice y palpe el filo hasta hacer desaparecer la rebaba, sin levantar el hierro de la superficie.

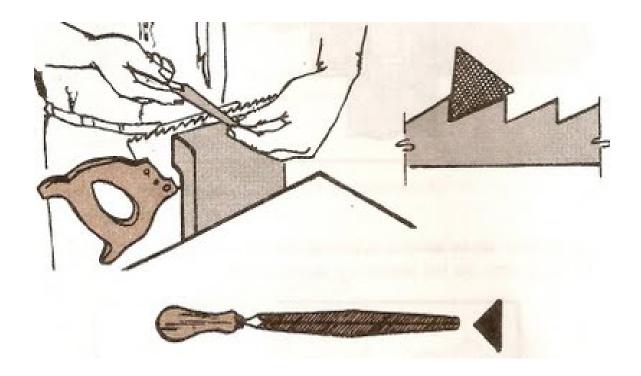
) Pase el filo de la herramienta por un pedazo de madera dura para hacer desaparecer totalmente la rebaba.

2 m.m. distancia

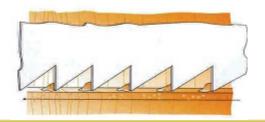
ARMADO DEL CEPILLO:


1. Coloque el hierro en el contra hierro y ajuste el tornillo, gradué la intensidad del hierro de acuerdo al trabajo por hacer y que sea mínimo de 2 mm.

- 2. Coloque la cuchilla y el contra hierro sobre el asiento, pasando éstas sobre el tornillo que sujeta la cuña.
- 3. Coloque la cuña sobre la cuchilla y el contra hierro pasándola por el tornillo que sujeta la cuña.



- 4. Gradué la cuchilla hacia afuera o hacia dentro con el mando.
- 5. Cuadre la cuchilla lateralmente con la guía o palanca y Ajuste el prisionero de la cuña.



`

AFILADO DE HERRAMIENTAS PARA ASERRAR

HERRAMIENTAS MANUALES PARA ASERRAR

Estas herramientas cuentan con una hoja de acero templado con dientes triangulares inclinados hacia delante. El corte lo realizan por medio de un movimiento de vaivén, cuando avanza la hoja se hace el corte y al retroceder, recupera su posición. EJ:(DIENTES DE SERRUCHO).

En este subgrupo encontramos las siguientes herramientas:

• Sierra común: constituida por un armazón de madera y una hoja de acero de aproximadamente 80 cm de largo, que se estrecha en sus extremos para quedar insertada en sus correspondientes clavijas mediante pasadores. Varias vueltas de cuerda unen los extremos superiores de los cabeceros. La tarabilla retuerce la cuerda y, apoyándose en el travesaño, tensa la hoja de acero. La limitante de esta herramienta es que no permite aserrar tablas a lo largo, siendo la máxima medida a cortar, la distancia que hay entre la hoja de acero y el travesaño central.

- Arco de sierra: consta de un marco de acero flexible en forma de U, con prensas en cada extremo para sujetar la hoja de sierra, más un mango. Es una buena herramienta para trabajos minuciosos y presenta la misma limitación que la sierra común.
- Serrucho de costilla: está conformado por una hoja de forma rectangular, más fina y con dientes más pequeños que el serrucho común. Va reforzado en el canto superior por un perfil metálico en forma de canal para proporcionarle rigidez a toda la hoja, permitiendo realizar un corte más recto. Se utiliza para cortes de precisión sin profundizar demasiado en la madera.

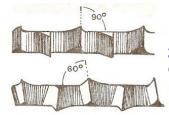
- Serrucho de punta: consta de una hoja estrecha inserta en un mango abierto, permite hacer cortes en redondo o calados que no tengan las curvas muy cerradas.
- Serrucho de empuñadura intercambiable: son un set de serruchos y un mango que puede ser utilizado con las tres hojas desmontables: un serrucho común, de costilla o de punta. Cada una de las hojas desmontables tiene una ranura en la que se inserta el mango, usando para fijar la hoja una palanca que acciona un tornillo de presión.

SDGEJA Subdirección General de Educación de Jóvenes y Adultos

• Corta chapa: está compuesto por una hoja de hierro acerado rectangular con dos de sus cantos ligeramente curvados y dentados, extremadamente finos, que se fija mediante tornillos a un soporte con mango de madera. Se usa para cortar terciados delgados, permitiendo cortes sin astillas.

• Serrucho común: consta de una hoja más ancha que las utilizadas en las sierras con cantos convergentes, donde en la parte más ancha se inserta una empuñadura fijada a la hoja por medio de tornillos remachados. Presenta la ventaja de no tener limitaciones en cuanto a la extensión de cortes rectilíneos.

AFILADO DEL SERRUCHO PASO A PASO.


HERRAMIENTAS NECESARIAS: Para afilar sierras y serruchos se necesita: una prensa, limas triangulares y triscadores. Las limas deben ser de corte sencillo y con arreglo a la forma y tamaño de los dientes de la sierra.

TRISCADORES: Llamase triscadores o trabadores unos instrumentos de acero, con los cuales tuercen alternativamente a uno y a otro lado los dientes de la sierra o serrucho. Existen 2 clases de triscadores uno antiguo y otro graduable.

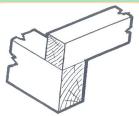
PROCESO PARA EL AFILADO:

1er.Paso: Coloque una hoja en la tenaza o tornillo de modo que los ángulos de los dientes estén a unos 3 mm. de las labios de la mordaza.

2do.paso: Iguale si es necesario, los dientes del serrucho, si son muchos los dientes desiguales, se rebajan primero los más sobresalientes y luego todos, de modo que la lima, al pasar por encima, toque todos los dientes.

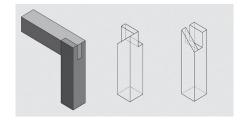
3er.Paso: Gradué el triscador y trisque todos los dientes inclinado el diente hacia el extremo, a partir de la mitad o un tercio de su altura. El paso entre 2 dientes consecutivos no debe exceder nunca el doble del espesor de la hoja, aun se recomienda algo menos.

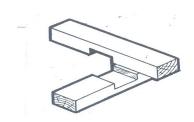
4to.Paso: Con una lima triangular que ajuste bien en el ángulo de los dientes, empiece a limar de izquierda a derecha y de atrás hacia adelante.


5to.Paso: dele 2 o 3 pasadas de lima según requiera el afilado, sin hacer demasiada presión.

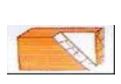
ENSAMBLES

Ensamble es el acoplamiento en ángulos. Ponemos a continuación las diferentes maneras de ensamblar dos piezas de madera, lo cual constituye la base para realizar cualquier trabajo. El operario podrá escoger la más adecuada teniendo en cuenta el costo, dimensiones, sencillez y aspecto exterior.

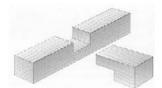

Ensamble sobrepuesto: Es el más sencillo y se emplea para trabajos bastos. Se refuerza con clavos, cola, clavijas y chapas de hierro.



Ensamble a media madera y a escuadra: Rebajadas las piezas, se superponen y encolan. Se utiliza para cuadros en ángulo recto, para travesaños, y piezas intermedias. Se refuerza con cola, clavos, tornillos y clavijas.

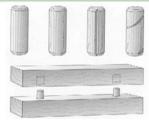


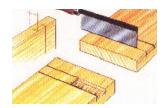
Ensamble de dos piezas a media madera en cruz: Se utiliza cuando no se dispone de espacio para superponer las dos piezas, las cuales han de hallarse en dos planos

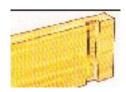


Ensamble a media madera y a inglete: Es de mejor presentación que el de escuadra. El de extremo de una pieza se rebaja a inglete; el extremo de la otra se corta a inglete y se rebaja a escuadra la media madera; usando un serrucho de costilla y el resultado es un acabado que, además se puede reforzar con clavos o tornillos.

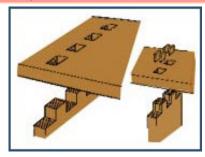
Ensamble a media madera en T: Una de las piezas penetra en un hueco de la otra media made

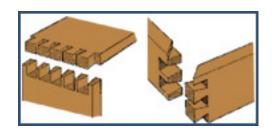


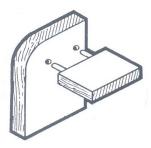

Unión de dos piezas encoladas y sujetas con clavos de madera: Era el procedimiento que se utilizaba para el esclavo de listones, molduras, acoplamientos, etc. Hoy lo sustituyen con ventaja las puntas.



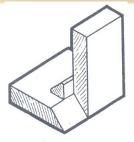

Unión de dos piezas en ángulo, con clavijas redondas: Las clavijas han de ir torneadas con ligera conicidad, si han de servir para trabazón; y se introducen algo inclinadas, para ofrecer mayor resistencia a la separación de las piezas.


Ensambles solapados de ranura: Se usan, sobre todo, para unir piezas de distinto grosor o para fijar el borde de un tablero de un soporte vertical. Son especialmente útiles para hacer baldas o librerías. En el ensamble de ranura completo se puede ver la unión de dos piezas. Para hacerlo visible por una de sus caras hay que hacer un ensamble oculto.

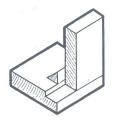

Ensambles de caja y espiga: Son muy seguros y resistentes, pero exigen gran precisión en su realización. Para hacer estos ensambles hay que rebajar el travesaño hasta lograr una espiga que se inserta en la caja del larguero. Los ensambles se pueden reforzar con cuñas de madera para obtener juntas fuertes y seguras que puedan prescindir, incluso, del encolado.


Otros ensambles

Existen otros tipos de ensambles derivados de los anteriores o destinados a unir piezas irregulares o con una gran precisión de estas juntas exigen gran habilidad o contar con herramientas profesionales que exceden del nivel de un manual básico de bricolaje. Es el caso de los ensambles de horquilla y de cola de milano, muy usados en ebanistería que generalmente se realizan de manera mecánica.



Unión de dos piezas con clavijas cilíndricas ocultas: Las clavijas deben penetrar perpendicularmente hasta los dos tercios del espesor de la tabla, y los agujeros deben quedar algo retirados de la testa. El enclavijado es fácil de realizar, y debilita menos las piezas que el ensamble a caja y espiga.



Unión de dos piezas a inglete y con listón de refuerzo: Esta disposición permite ocultar las testas. Lleva un ángulo de refuerzo superpuesto. Con piezas del mismo grueso y el ángulo recto, el bisel tendrá 45°.

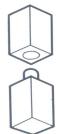
Unión de piezas con rebajo y con listón de refuerzo: El rebajo y la testa deben coincidir.es un ensamble fuerte, sencillo, y de mucha aplicación.

EMPALMES

Empalme es la unión de dos piezas por sus extremos suele hacerse para obtener maderos de larga dimensión.

De ordinario el ebanista no recurre a los empalmes, ya que los muebles de grandes dimensiones se construyen con elementos desmontables, y las maderas empleadas suelen tener suficiente longitud. Sin embargo enumeraremos algunas clases de empalmes, por tener bastante aplicación en la carpintería.

Hemos de tener en cuenta en los empalmes que la presión es distinta según esté la pieza en posición vertical u horizontal, de cara o de canto; y según deban realizarse esfuerzos.

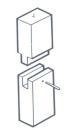

EMPAIMES DE COMPRESIÓN

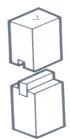
Empalme de escarpe por la cara: Carece de acción resistente. De ordinario va superpuesto o apoyado sobre otras maderas o elementos. Hay escarpes por el canto, por cara y canto, a moldura, etc.

Empalmes a media madera con testa en sesgo: La longitud de corte es siempre dos o tres veces mayor que el ancho de la pieza. Estos empalmes se refuerzan con tornillos, clavijas, abrazaderas etc.

Empalme de espiga sencilla: Escuadradas las testas, se escoplean las dos piezas, introduciéndose en ellas una pieza postiza. Puede hacerse también una mortaja en una pieza, y una espiga propia en la otra.

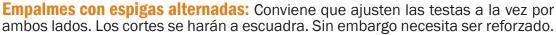
Empalme de espiga redonda: Puede hacerse con espiga propia o postiza. El largo y el diámetro de la espiga estarán en proporción de la sección de las piezas.


Empalmes a media madera: Las dos maderas quedan rebajadas a su mitad y superpuestas. Es el más sencillo de los empalmes en carpintería. Se hace coincidir la unión sobre pilastras, columnas, etc. Es indeformable y muy rígido.



Empalme a pico de flauta: Se hace uniendo las dos piezas con un corte oblicuo, cuyos extremos son cortes falsos. No es adecuado para soportar grandes cargas, ya que el corte en bisel es una superficie deslizante. Debe reforzarse con tornillos de tuerca, abrazaderas etc.

Empalme de horquilla: Constituye un ensamble sólido, si los cortes se dan con exactitud. El espesor de la espiga oscila entre 1/3 y 1/2 de la pieza.



Empalme de horquilla: Se diferencia del anterior en que lleva una espiga postiza. Conviene usar adhesivos de toda garantía. La resistencia a la fuerza de flexión, depende en parte de la longitud de la espiga.

Empalme de horquilla: Ambas piezas terminan en cortes falsos. Esta disposición refuerza bastante la unión, al ser sometida a la fuerza de flexión.

Empalme a doble espiga: Las espigas van abiertas, y se ven por ambos lados. La solidez depende mucho de un buen ajuste, y de la clase de refuerzo.

Empalme con horquilla combinada: Efectuada la operación en una pieza, se marca luego la otra. En general se utiliza en piezas de gran sección, por ser una unión muy solida. La parte inclinada ha de ser lo más larga posible.

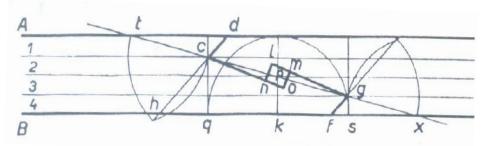
Empalme a media madera en cuarteles: Para un perfecto ajuste, se han de marcar y hacer las dos piezas exactamente iguales. Los salientes de una encajan con los rebajos de la otra.

Empalme de dientes alternos: El grueso de los dientes será 1/4 del espesor de la pieza. Todas las testas deben tener el mismo contacto por igual.

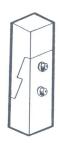
Empalme con dientes en cruz: Es recomendable para soportar grandes pesos siempre que lo permita la sección las espigas y las cajas son rectas. Lleva mucho trabajo su ejecución.

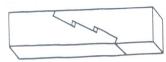
Empalme a pico de flauta combinado: En una mitad de la pieza, el pico de flauta esta en un sentido; y en la otra mitad en sentido contrario. Se usa para pies derechos poco cargados. Admite más carga reforzándolo con un collar.

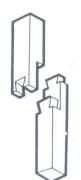
Empalme de cola de milano: La espiga se ha dejado pasante. Es uno de los más indicados para fuerzas de tracción. Puesto de canto, soportará bastante bien el esfuerzo de flexión.


Empalme de rayo Júpiter con cuñas: Las cuñas tienen por objeto repartir los esfuerzos. Las testas deben tener contacto todas a un tiempo.

Para marcar proporcionalmente dicho empaque, se siguen las normas siguientes: se divide la altura AB de la pieza en cuatro partes iguales.


A partir de **K**, se toman las distancias **Ks** y **Kq** iguales a la altura, se unen las intersecciones **c** y **g** con la recta **T** x haciendo centro en **c**, y con un radio cualquiera **c** t, se traza el arco **c** h. Únase los puntos h y c en la recta h d y la porción c d será el corte oblicuo extremo del rayo.


De igual manera se determina el otro corte extremo **f g.** por el punto **p** trácese una oblicua **l o** (en la que hacemos **lp = po**), la cual será la diagonal para el hueco de las cuñas. Únase el punto **i** con la **g** y el punto **o** con **c**, y tendremos el rayo de Júpiter por los puntos **l y o** se bajan las perpendiculares **l n** y **o m** y el rectángulo (o cuadrado) resultante será la escuadría para las dos cuñas.


Empalme de rayo de Júpiter: El corte inclinado no está en línea recta, sino quebrada. Los cortes se darán con precisión. Se refuerza con pernos.

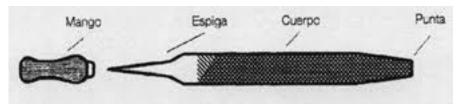
Empalme con rayo de Júpiter con redientes: Esta clase de empalmes tiene tres planos inclinados, en vez de los dos que tiene generalmente el rayo de Júpiter. Reforzado con tornillos. Puede ser de gran resistencia.

Empalmes a horquilla postiza: Enlaza las dos piezas aproximadamente en la mitad de su espesor. Al apretar las llaves, las dos piezas deben quedar en línea recta. Cuanto mayor ajustadas están las llaves, más solidez dan a la unión.

Empalmes de colas de milano opuestas: Suele hacerse a media madera, y con doble cola de milano. Reforzado con clavijas, queda muy fuerte y resiste bien los esfuerzos de tracción.

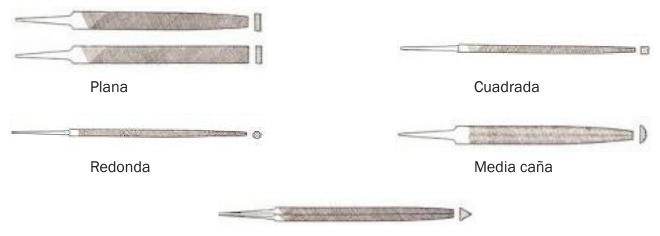
Empalme de llave: Se obtiene cortando las cabezas de las piezas, de modo que formen planos escalonados. En el centro se deja un hueco en el que se introduce una llave o dos cuñas que aprietan la juntura.

Empalmes de doble colas de milano combinado: Consiste en dos ensambles de cola, practicados paralelamente a la diagonal. Una vez montado, tiene la apariencia de cuatro espigas de cola sobre la misma pieza. La perspectiva dará idea de cómo se ejecuta. Según la sección de la pieza, podrá ser: simple, o sea con una cola y doble.


Nota: Los empalmes hay que hacerlos con minuciosa precisión. Pueden quedar visibles u ocultos. Se escogerán según el esfuerzo que deban realizar, pero siempre con un criterio acertado, y usando el más adecuado para cada trabajo. También hay que tener en cuenta que todos los empalmes admiten refuerzos de cola, tornillos, bridas, y abrazaderas.

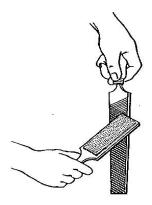
SDGEJA Subdirección General de Educación de Jóvenes y Adultos

HERRAMIENTAS PARA RASPAR Y PULIR

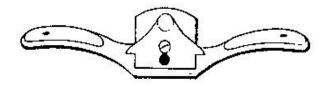

Escoffnas y Ilmas

Son herramientas de acero templado, con dientes salientes que arrancan pequeñas astillas de la madera.

Suelen ser de corte grueso medio o fino. Las hay de media caña, redondas, triangulares, planas y cuadradas. En la figura pueden verse otras secciones de limas. La clasificación del corte se basa en la cantidad de dientes por centímetro cuadrado, que puede variar de 6 a 150.


Las escofinas tienen los dientes gruesos y triangulares; las limas tienen la cara finamente estirada, que se utiliza para repasar superficie curvas y planas, trabajadas de antemano con la sierra y el formón.

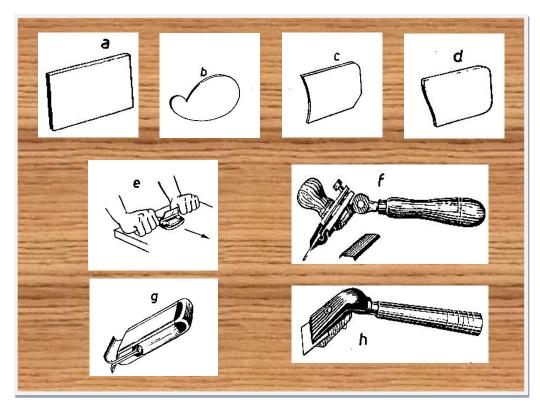
Triangular


(Perrife

Es un cepillo con puntas cortas, de hierro, que sirve para la limpieza de limas y escofinas.

Bastrén o ouchilla de desbastar

Se emplea con ambas manos, realizando con el trabajos más pesados que con las cuchillas de raspar



CLASES DE CUCHILLAS

Las cuchillas o rasquetas pueden ser: de carpintero, ebanista, taraceador y escultor. Los detalles a, b, c, d, muestran las rasquetas de ebanista (detalle) e, que son semejantes a un porta cuchillas

Cuchillas de pullr

Llámese también rasquetas, y consisten en unas hojas de acero templado, semiduro y de calidad, generalmente rectangulares, aunque pueden tener diversas formas para poderse adaptar a distintas superficies, y que tienen sus caras y sus cantos perfectamente pulidos.

- a. Cuchilla de carpintero
- c. Cuchilla de taraceador
- e. Rasqueta de ebanista
- g. Rasqueta con hoja reversible

- b. Cuchilla de ebanista
- d. Cuchilla de escultor
- f. Rasqueta para pisos
- h. Rasqueta de dos filos.

Las rasquetas del detalle f se usan para parquetes y trabajos de piso, ya que con ellas se llega a los ángulos de la habitación. En g y h, tenemos dos rasquetas de ebanista: una de hoja reversible con dos filos en casa extremo, y otra con una cuchilla cóncava de dos filos.

SDGEJA Subdirección General de Educación de Jóvenes y Adultos

Evaluación Modulo 01

Tipo verdadero o falso

A continuación se le presenta una serie de proposición de las cuales unas son verdaderas y otras falsas. Escriba en el paréntesis una (f) si la considera falsa y una (v) si es verdadera

1 Se le llama medición lineal porque se mide en línea recta)
2 Se le llama métrico decimal porque va de 10 en 10 unidades	()
3 Los múltiples de S.M.D normalmente se utilizan en la rama de topografía	()
4 1 metro equivale a 100 centímetros (cm)	()
5 1 centímetro equivale 10 centímetros (mm)	()
6 La base del sistema ingles S.I es el pie	()
7 Los múltiplos de S.I son medidas mayores que el pie	()
8 1 pie equivale a 12 pulgadas	()
9 La yarda es utilizada en el comercio para comprar telas, alambres, plásticos, etc.	()
10 En 1 pulgada se encuentran 16/16 "avos	()

Evaluación Modulo 02

Instrucciones: conteste en forma clara lo que a continuación se le pide

10.- ¿Escriba las propiedades físicas de la madera?

¿Qué es la madera?
 ¿Enumere las partes de un tronco?
 ¿Enumere los tipos de madera blandas que existen?
 ¿Enumere los tipos de madera semiduras que existen?
 ¿Qué son las sustancias persevantes?
 ¿Cómo se clasifican las sustancias persevantes?
 ¿Cómo es la patología de la madera cuando es atacada por hongos? 8.- ¿Enumere los insectos xilófagos que dañan la madera?
 ¿Enumere las características externas de la madera?

Evaluación Modulo 03

Instrucciones: conteste en forma clara lo que a continuación se le pide:

- 1.- ¿Enumere las herramientas para aserrar?
- 2.- ¿Enumere los pasos para el afilado del serrucho?
- 3.- ¿Qué son ensambles?
- 4.- ¿Qué es el ensamble sobrepuesto?
- 5.- ¿Enumere herramientas para prensar y apretar?
- 6.- ¿Enumere herramientas para raspar, alisar y pulir?
- 7.- ¿Para qué se utilizan las escofinas y las limas?
- 8.- ¿Enumere las características de las lijas?
- 9.- ¿Cuáles son las características de los cepillos portátiles eléctricos?
- 10.- ¿Enumere los ensambles más usados en un proyecto de madera?
- 11.- ¿Cuál es la diferencia entre empalme y ensamble?

Evaluación Modulo 04

Tipo verdadero o falso

A continuación se le presenta una serie de proposición de las cuales unas son verdaderas y otras falsas. Escriba en el paréntesis una (f) si la considera falsa y una (v) si es verdadera

1 El corte guiado es cuando usamos hoja de acero templado con filo en bisel ligeramente cóncavo.	()
2 El corte libre es cuando la hoja de acero termina con filo en punta	()
3 El cepillo metálico es muy importante en un taller de carpintería	()
 Las cepillos de vuelta o de codo, desarrollan la misma función de pulir y desbastar Superficies. 	()
5 La mascarilla es necesaria para no inhalar residuos de metal	()
6 La cuchilla debe estar como una piedra de agua con filo como las tijeras	()
7 La piedra de material sintético es uno de los tipos de piedras de afilar	()
Tipo de respuesta breve		
1 Explique con sus propias palabras los pasos que debemos seguir para afilar las cuchillas de cepi nes.	llos for	·mo-
2 Enumere las herramientas para cepillar con hoja de corte guiado.		
3 - Explique cómo debemos utilizar la sierra de calar		